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A B S T R A C T

Phuti Karpas, historically central to cotton production and thought extinct, has re-emerged in botanical research, 
prompting a need for reliable identification methods. This study develops a systematic approach for classifying 
Phuti Karpas leaves using various convolutional neural networks (CNNs), including AlexNet, Inception, VGG16, 
MobileNetV2, and a custom-designed baseline model. A unique dataset of 2354 leaf images was curated, with 
two main classes: Phuti Karpas and Non Phuti Karpas, the latter including 14 other plant types to enhance model 
robustness. Each model was evaluated on metrics like accuracy, precision, recall, computational time, and 
memory efficiency. AlexNet yielded the highest average accuracy, while the custom baseline model, optimized 
for mobile deployment, provided comparable accuracy with faster inference. To demonstrate real-world us
ability, an Android app was created for real-time Phuti Karpas identification, offering an accessible tool for field 
researchers and conservationists. This work not only advances deep learning applications in plant taxonomy but 
also aids in the cultural and scientific revival of Phuti Karpas.

1. Introduction

In recent times, studies on the automatic plant identification and 
classification have drawn increased attention. Professionals such as 
agronomists, biologists, foresters, etc. are interested in classifying plants 
into relevant taxonomies [1]. Usually, plant identification and classifi
cation can be accomplished by visually inspecting the plant features, 
such as floral parts, leaves, plant fruits, etc. Modern computer vision 
techniques and several mobile applications are being developed to make 
the task of plant classification and identification easier [2]. Plant cate
gorization in the modern era has become an essential task because of the 
applications of different plant species in the field of medicine and 
agriculture. The application also includes weed detection, growth esti
mation, and disease diagnosis [2]. Also in the field of medicine, different 
plant species are used as medicine to eradicate diabetes and 

cardiovascular diseases [3–6]. Plant taxonomy is used to categorize 
plants, where plants are divided into hierarchical groups, that may be 
searched endlessly based on biased plant features, according to recent 
studies[7]. This work also explores computer vision-based deep learning 
techniques in classifying a specific type of rare plant entitled, Phuti 
Karpas. It also evaluates the feasibility of designing a custom architec
ture that provides a competitive performance in accuracy with a quality 
computational efficiency by making the solution suitable for real-life 
mobile devices (see Figs. 22 and 23).

A good number of research works have concluded that the task of 
plant identification and classification based on plant leaves are more 
convenient and reliable [1,5]. However, due to the huge number of plant 
species and innumerable labeled or unlabelled data, visual identification 
of the plant species through manual inspection has become quite chal
lenging [1]. Also, the variations in light, posture, and orientation impact 
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the recognition task greatly. Over the time, the alteration in leaf and its 
colour change under diverse climate conditions entails many difficulties. 
Thus, due to plant diversity, variations in clutter, orientation, back
ground, viewing perspective, etc, recognizing plant species from videos 
or pictures is challenging [2]. Due to the underlying challenges and 
versatile variations in features embedded in different plant species a 
significant number of studies have been addressing the plant recognition 
and classification problem with the goal of improving current 
performance.

The discriminative plant features, such as unique colour, leaf texture, 
ventilation, eccentricity etc. are considered as key features in this regard 
[1]. Traditional machine learning approaches have been designed 
focusing on the color and shape of the plant [8,9], texture [10,11], and 
venation features [12,13] for plant recognition [17,20]. Moreover, with 
the advancement of modern deep-learning methods a pool of new so
lutions has emerged due to their efficiency in identifying features 
compared to the traditional machine-learning-based methods [14]. 
Modern deep Convolutional Neural Network (CNN) uses manually an
notated data to extract features automatically in an end-to-end manner 
rather than depending on handcrafted features of plants such as color, 
shape, and texture [1,7]. Though CNN requires a huge amount of data 
for training and faces problems such as overfitting issues, this method is 
quite efficient in learning features and giving accurate results [15].

This work focuses on identifying the Phuti Karpas tree plant using 
CNN and image processing techniques by studying its different features. 
It was widely used in the earlier centuries for producing fine cotton. The 
cotton produced from these trees was used for making cotton cloth. They 
were widely found in Mesopotamia or present Iraq along with the Tigris 
River from 900 BCE – 270 CE. Their similar variety was also prevalent in 
Bengal and the cotton cloth produced from these trees was named 
“Muslin”. However, over the time being, this tree was disidentified and 
as a result Muslin in Bengal was no longer available since the last 200 
years. Recently in Bangladesh, it was proposed to get the lost historical 
Phuti Karpas tree back, and hence samples of Muslin cloth were 
collected from the British Museum for adequate information. The DNA 
of Phuti Karpas was identified from dried preserved leaves that were 
available in the Royal Botanical Garden. The birthplace of Phuti Karpas 
was discovered on the riverbank of the Meghna River with the help of 
modern satellites measuring the diversion of the river. After a long 
investigation, a tree was found that matched 70 % with the Phuti Karpas 
plant in terms of DNA. A modern technology called DNA sequencing was 
used to match the DNA of the tree with the Phuti Karpas plant. Then with 
the aid of modern agro-technology, necessary steps were taken for their 
rebirth in Bengal. Therefore, Phuti karpas has become again a part of 
concern and this study focuses on developing an image analysis-based 
solution to properly distinguish Phuti Karpas leaves from the others. 
We believe that this effort would be supportive for various use cases 
related to its leading and widespread adoption of this long-lost precious 
agricultural entity. Main contribution of this paper is as follows. 

• Collection and pre-processing of a custom-collected dataset con
taining Phuti Karpas plants and other relevant non-Phuti Karpas 
instances.

• Evaluating the effectiveness of the existing well known and widely 
used CNN-based architectures in recognizing Phuti Karpas plants 
along with testing a custom baseline architecture that provides the 
fastest speed, moderate accuracy with low resource consumption.

• Comparing the performance of all the architectures in terms of ac
curacy, precision, recall, learning stability, weight storage memory, 
and computational time.

• Deployment of the architecture in mobile as an Android application 
for various real-life use cases.

In a brief, our work is a pioneering direction in classifying Phuti 
Karpas plants. For the training and evaluation, we have custom collected 
and prepared a novel Phuti Karpas dataset. Furthermore, we also explore 

the quality of well-known deep learning image classification architec
tures in detecting such plants and exhibit the potential to design a 
custom architecture with a quality trade-off between speed and 
performance.

The rest of this paper is structured as follows. Section 2 comprises 
related works. Section 3 discusses existing and the proposed architec
tures. Next, Section 4 includes a discussion of the custom-prepared 
dataset along with an extensive performance analysis of the addressed 
architectures. Section 5 contains a discussion and summary of the whole 
work along and Section 6 provides a discussion on the current limitation 
and possible directions for further extensions.

2. Related works

To classify leaves including Phuti Karpas using convolutional neural 
networks (CNNs), several systematic approaches can be employed. Each 
approach involves capturing and analyzing unique features of the 
leaves, such as their shape, pattern, and texture. A short description of 
various methods that can be used for this purpose has been provided in 
the following.

Baseline CNN Approach starts with a basic CNN model that fits to the 
dataset [16]. It includes a few convolutional layers for feature extrac
tion. Pooling layers support to reduce dimensionality of the data. Then 
the connected layers relate the extracted features to specific categories. 
This is a basic method which is suitable for small datasets.

The approach of Transfer Learning Using Pretrained Models in
fluences existing CNN architecture such as VGG16, ResNet, MobileNet, 
which have been pretrained on large datasets [19,21,22]. It can extract 
meaningful features from the images. This model can be adopted to 
classify leaves effectively. It is useful for a limited number of labeled 
data because it minimizes the training time and improves accuracy. 
Ensemble learning with multiple CNN combines predictions of multiple 
CNNs to make an improved classification system [34–38]. In this 
method, each CNN is trained independently focusing on specific features 
or patterns of the leaves. By combining the outputs, the final prediction 
is obtained. Thus, the prediction becomes accurate. Although this 
method is effective, it is resource intensive. For this reason, it requires 
high computational resource.

Custom Architectures for Leaf-Specific Features includes CNN ar
chitecture aligned to specific features of Phuti Karpas leaves, such as 
their edge shapes, textures, vein structures. Edge detection can focus on 
the patterns, which can be processed by specific features within the CNN 
architecture [40–44]. This approach is highly customized and leads to 
better performance. Applying this approach requires in-depth under
standing of the dataset’s properties.

Lightweight Models for Edge Deployment means application of 
lightweight CNN. MobileNet3 is an example of this kind of model. It 
requires low computational capacity. It results in high efficiency and 
accuracy. The training can further be enhanced with pruning or quan
tization to reduce model and improve inference speed. Thus, it is suit
able for real time applications. Hierarchical classification involves 
multistage approaches, and the task is divided into a few levels. Firstly, 
CNN broadly categorizes leaves, then another CNN refines the classifi
cation. It identifies specific species. It is effective for datasets with 
complex hierarchical relationships.

In Attention Mechanisms for feature integrates attention mecha
nisms into CNNs. It focuses on the unique features of the leaves. This 
kind of approach supports the CNN to prioritize specific regions of the 
image. It increases the accuracy and interpretability of the model 
because of focusing on the most relevant features of the images/data. In 
Data Augmentation and Synthetic Data Generation expands the dataset 
using augmentation techniques such as rotating, flipping, or adjusting 
the color of leaf. Generative Adversarial Networks can create synthetic 
data to simulate diverse leaf appearance. They can address the chal
lenges of small datasets. It can provide diverse examples for CNN to 
learn from. A precaution of this method is to be careful about inclusion 
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of unrealistic samples.
It is noteworthy that each of the approaches has its own advantages 

and disadvantages. Combined approaches can be applied to obtain 
better accuracy. For example, transfer learning can be paired with data 
augmentation to improve the utility of a small dataset. Similarly, 
lightweight models can incorporate attention mechanisms for proper 
classification. Before applying combined approach, dataset size, 
computational capacity, and intended application can be considered. By 
systematically exploring and implementing the strategies, effective 
systems can be built for classifying Phuti Karpas leaves, catering to 
diverse scientific and practical needs. Advantages, weaknesses, and 
challenges of applying different approaches for identifying Phuti Karpas 
are summarized in Table 1. A summary of various possible approaches 
for this purpose are illustrated in Fig. 1.

3. Methodology

This section incorporates the detailed discussion on the deployed 
architectures for plant leaf identification.

3.1. Convolutional neural network

CNN is a special type of deep learning method, broadly implemented 
in image recognition, object classification, and other computer vision 
research [18]. A typical CNN mainly constitutes of Convolutional Layers 
(CONV), Pooling Layers (Pool), and Fully Connected Layers (FC) [24]. 
CONV and Pool layers contain different size of filters or kernels. There 
also exists various activation functions, e.g., Rectified Linear Unit 
(ReLU) function, tanh, etc. to control the firing number of different 
neurons (or layers). CNNs are made up of a series of layers that take an 
input image, pass through different layers and activation functions, and 
predict the output class or label probabilities. One obvious advantage of 
CNN is that it takes raw pixel intensity as a flattened input image vector 
rather than deploying handcrafted feature extraction methods [39]. The 
different layers in CNN consist of some learnable filters that can auto
matically identify the complex filters in an image and after combining 
the results of the filters, it can predict the label probabilities or class of 
input image [25]. In CNN layer, the neurons are connected to a small 
area of previous layer neurons. The first layer detects the minimum level 
features; subsequent layers detect mid-level and high-level features, 
respectively. CNNs have gained much popularity in image recognition 
due to this distinctive technique of building up successive layers that 
extract from lower to higher-level features [23].

CONV is an essential layer for CNN architecture as CNN learn fea
tures of an input image by applying filters. The CONV layer mainly 
consists of small sized filters usually in the dimension of [3 × 3] or [5×
5] and some feature maps. Instead of going through the full image, the 
input volume is convolved with the filters and the characteristics are 
learnt at a specific spatial point. After all the required filters have been 
implemented to the input volume, the final output volume is created by 
combining all to a matching 2-D feature map which was formed as a 
filter slide across the network’s width and height. Let the input volume 
in CONV layer is represented as [Winconv × Hinconv × Dinconv] that cor
responds to the input image’s spatial dimensions and the output volume 

in CONV layer is represented as [Woutconv × Houtconv × Doutconv]. Let the 
four hyper parameters that correspond to the filter numbers, filter size, 
stride, and zero padding amount are represented as [Kconv, Fconv, Sconv, 
Pconv]. The mathematical relationship among the parameters can be 
shown as follows. 

Woutconv =

(
Winconv – Fconv + 2Pconv

Sconv
+1

)

(1) 

Houtconv =

(
Hinconv – Fconv + 2Pconv

Sconv
+1

)

(2) 

Doutconv = Kconv (3) 

Pooling Layer is termed as the intermediate layer in Convolutional 
Neural Network. This layer’s primary function is to compress the size of 
the incoming input along the spatial dimensions. A pooling layer can 
down sample or compress an incoming volume of [64 × 64 × 12] to a 
volume of [32 × 32 × 12]. Hence, it reduces over-fitting and network 
computations by down sampling the previous layer’s feature maps 
derived from various filters. If, the input volume for a pooling layer is 
represented as [Winpool × Hinpool × Dinpool], the output volume is rep
resented as [Woutpool × Houtpool × Doutpool], and the two parameters that 
corresponds to the filter size and stride are represented as [ Fpool, Spool ], 
then the mathematical relation that combines all of them can be written 
as follows. 

Woutpool =

(
Winpool – Fpool

Spool
+1

)

(4) 

Woutpool =

(
Hinpool – Fpool

Spool
+1

)

(5) 

Doutpool =Dinpool (6) 

FC is denoted as the final layer of CNN that predicts the final class or 
label based on the given input. The neurons in this layer are completely 
linked to the neurons in the previous layer. The output dimension of a 
Fully Connected Layer is [WFC × HFC × NFC] where NFC refers to the 
number of classes, HFC represent height and WFC represent width that 
are considered for classification.

In this research, CNN along with some of its popular architectures 
such as AlexNet, VGGNet and a newly proposed network is used for 
detecting Phuti Karpas plant. The research involves object recognition 
that detects plant in an image and image classification to recognize 
which species of plant it belongs to. For this approach the raw dataset of 
the plant images is trained and later tested with an unseen image to 
predict the labels correctly. Furthermore, the research aims to find out 
which of the tested CNN architectures can perform effectively with 
higher accuracy for the Phuti Karpas plant recognition.

3.2. CNN architectures

3.2.1. AlexNet
AlexNet is a popularly used network structure of CNNs consisting of 

numerous innovations and contributions. This special network structure 

Table 1 
Advantages, weaknesses, and challenges of applying different approaches.

Approach Strength/Advantages Weakness Challenges

Baseline CNN Simple, easy to implement Limited scalability Limited performance on complex data
Transfer Learning High accuracy, quick/faster training High computational requirements May not capture unique features
Ensemble Learning High accuracy, robust performance/predictions Expensive in resources Time-intensive, risk of overfitting
Custom Architectures Full control, fit to problem Requires domain expertise Requires extensive experimentation
Lightweight Models Can easily be applied Slight trade-off in accuracy May sacrifice accuracy
Hierarchical Classification Captures class relationships, can handle complex datasets More annotation and training needed Complex to implement
Attention Mechanisms Enhanced focus on features Architectural complexity Computationally intensive
Data Augmentation Better generalization, reduces overfitting Risk of overfitting on synthetic data Can introduce noisy transformations
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Fig. 1. Illustration of various approaches for classifying/identifying Phuti Karpas in a concise format.
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was proposed in Ref. [25] that got much recognition due to its novel 
dropout techniques and development of the activation function-ReLU 
which resolves over-fitting problem. The function ReLU is preferred 
over traditional activation function as it can eradicate gradient vanish
ing problem [26]. It is defined in the following. 

ReLU(x)=max(x, 0). (7) 

Also, to reduce the overfitting problem, dropout strategy was 
employed especially in the fully connected network layers. Dropout 
causes neurons to work together, reducing joint adaptation and 
improving generalization. One noteworthy characteristic of AlexNet is 
that it can improve recognition accuracy very efficiently despite 
decreasing the number of parameters. AlexNet’s architecture is made up 
of approximately 650,000 neurons and 60 million parameters [26]. 

Regardless to the fact that AlexNet was run on two graphics processing 
units (GPUs), researchers nowadays implement AlexNet using a single 
GPU [27]. Several techniques such as overlapping, pooling, and multiple 
GPU training are used for training AlexNet to improve the accuracy.

In Fig. 2, AlexNet architecture is visualized to show how the feature 
maps are propagated through different layers and activation functions. 
For each layer (Convolution, Max Pool, and Fully Connected) a number 
of filters or neurons have been shown accordingly. For each convolu
tional layer except the first one, padding was kept such as the input and 
output height and width dimensions stay the same. Also, each con
volutional layer uses ReLU as the activation function. To conduct the 
experiments in this literature, the input image’s dimensions were 227 ×
227 × 3, where 3 denotes the number of colour channels. Also, the 
problem focused on classifying two classes. The total number of 

Fig. 2. Visualization of the layers of the AlexNet architecture.

Fig. 3. Visualization of the layers of the VGG16 architecture.
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parameters of the AlexNet architecture was 58,295,042 where among 
them 58,292,290 were trainable and the reaming were non-trainable 
parameter.

3.2.2. VGGNet
VGGNet proposed in Ref. [28], is an improved CNN architecture that 

achieved significant improvements compared to AlexNet, ZFNet etc. 
VGG16 (13 convolutional layers and 3 fully connected layers) and 
VGG19 (16 convolutional layers and 3 fully connected layers) are the 
two most common VGG architectures that are widely used in classifi
cation problems [29]. In VGGNet architecture, there are five blocks 
where each block starts with a convolutional layer and then moves on to 
max-pooling. Basic VGGNet architecture operates by taking input data 
and passing them through a convolution layer stack. In Fig. 3, a 
block-based diagram has been shown to understand the layers of this 
architecture. As previously mentioned, to conduct the experiments in 
this literature, the input image’s dimensions were 227 × 227 × 3, where 
3 denotes the number of RGB colour channels.

Also, the problem focused on classifying three classes. The scaler 
number attached to the convolution (CONV) layer denotes the number 
of consecutive layers of convolution and for each convolution layer 

Fig. 4. General view of Inception Blocks.

Table 2 
Summarized information of the feature maps of InceptionNetV1 architecture.

Layer #Filters/ 
Neurons

Filter 
size

Stride Size of 
feature map

Activation 
function

Image ​ ​ ​ 227 × 227 
× 3*

​

CONV 64 7 × 7 2 114 × 114 
× 64

ReLU

Max Pool ​ 3 × 3 2 57 × 57 ×
64

​

CONV 192 3 × 3 1 57 × 57 ×
192

ReLU

Max Pool ​ 3 × 3 2 29 × 29 ×
192

​

Inception 
(3A)

​ ​ ​ 29 × 29 ×
256

​

Inception 
(3B)

​ ​ ​ 29 × 29 ×
480

​

Max Pool ​ 3 × 3 2 15 × 15 ×
480

​

Inception 
(4A)

​ ​ ​ 15 × 15 ×
512

​

Inception 
(4B)

​ ​ ​ 15 × 15 ×
512

​

Inception 
(4C)

​ ​ ​ 15 × 15 ×
512

​

Inception 
(4D)

​ ​ ​ 15 × 15 ×
528

​

Inception 
(4E)

​ ​ ​ 15 × 15 ×
832

​

Max Pool ​ 3 × 3 2 8 × 8 × 832 ​
Inception 

(5A)
​ ​ ​ 8 × 8 × 832 ​

Inception 
(5B)

​ ​ ​ 8 × 8 ×
1024

​

Avg Pool ​ 7 × 7 1 1 × 1 ×
1024

​

Dropout rate = 0.4 ​ ​ ​ ​
FC 2 ​ ​ ​ SoftMax
Auxiliary Network 1
Avg Pool ​ 5 × 5 ​ 4 × 4 × 512 ​
CONV 128 1 × 1 ​ 4 × 4 × 128 ​
FC 1024 ​ ​ 1024 ReLU
Dropout rate = 0.7 ​ ​ ​ ​
FC 2 ​ ​ 2* SoftMax
Auxiliary Network 2
Avg Pool ​ 5 × 5 ​ 4 × 4 × 528 ​
CONV 128 1 × 1 ​ 4 × 4 × 128 ​
FC 1024 ​ ​ 1024 ReLU
Dropout rate = 0.7 ​ ​ ​ ​
FC 2 ​ ​ 2* SoftMax
Total number of parameters including auxiliary networks = 10,309,430 

Total number of trainable parameters including auxiliary networks = 10,309,430

N.B.: CONV: Convolutional Layers, Max Pool: Max Pooling Layers, and FC: Fully 
Connected Layers.

Table 3 
Summarized information of the Inception Layers.

Name # (1 
× 1) 
Filters

# (3 ×
3) 
Reduce 
filters

# (3 
× 3) 
Filters

# (5 ×
5) 
Reduce 
filters

# (5 
× 5) 
filters

# of filters in 
Max Pooled 
and then 
applied (1 ×
1) 
convolution

Inception 
3A

64 96 128 16 32 32

Inception 
3B

128 128 192 32 96 64

Inception 
4A

192 96 208 16 96 64

Inception 
4B

160 112 224 24 64 64

Inception 
4C

128 128 256 24 64 64

Inception 
4D

112 144 288 32 64 64

Inception 
4E

256 160 320 32 128 128

Inception 
5A

256 160 320 32 128 128

Inception 
5B

384 192 384 48 128 128

N.B.: CONV: Convolutional Layers, Max Pool: Max Pooling Layers, and FC: Fully 
Connected Layers.
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paddings are kept such as the input and output height and width 
dimension stays the same. The output of each CONV layer is passed 
through a ReLU activation function. The total number of parameters of 
the architecture is 134,268,738 among them 134,268,738 are trainable 
parameters.

3.2.3. InceptionNetV1
In this section, we will discuss the InceptionNetV1 architecture as 

shown in Fig. 4 that has been used to address the Phuti Karpas leaf 

detection problem [30]. Identifying the filter or kernel size is crucial to 
label the performance of CNN based architectures and often it is a 
difficult and experimental task for each dataset to properly find the 
concerned size. InceptionNet architecture or GoogleNet architecture 
shades light on this aspect and applies filters of multiple sizes. Its novelty 
lies in recognizing similar categories of images having multiple sizes, 
shapes, scales, and orientations of the main subject. In Tables 2 and 3, 
the summarized information of the convolutional layers, max pooling 
layers, and fully connected layers have been presented. Besides, there 

Fig. 5. Abstract view of InceptionNet architecture’s main network.

Fig. 6. An abstract pictorial representation of MobileNetV2 architecture’s layers.
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are some inception layers that applies some (1 × 1), (3 × 3), (5 × 5) 
filters and a max pooling over the input feature map separately and then 
concatenate the results increasing the number of channels and keeping 
the height and width same to the input image during returning the 
extracted feature map (see Fig. 4 and Table 2).

Fig. 5 presents an overview of Inception architecture. Only the major 
architecture’s layers are presented. Inception architecture also main
tains two additional very small architectures which are simultaneously 
trained. For simplicity, they are omitted.

InceptionNetV1 also applies two additional parallel auxiliary layers 
consisting of an average pooling layer (Avg Pool), a single convolutional 
layer, and two fully connected layers. All of these three networks are 
simultaneously trained, and weights are updated. These two auxiliary 
networks work over the outputs of inception 4A and inception 4D layers 
respectively.

3.2.4. MobileNetV2
MobileNetV2 is another very known architecture as shown in Fig. 6

that is very lightweight and suits well for mobile devices where it re
quires to solve extensive mathematical calculations [31]. This archi
tecture maintains a bottleneck layer that applies inverted residuals 
technique which works on three steps. Firstly, it applies an expansion 
layer or convolution (E) to uncompress the data, then a depthwise layer 
or depthwise convolution (D) to filter the data and finally a projection 

layer or compression layer (C) to compress the data. Also, they apply the 
idea of skip connection to propagate residue among deep layers. To 
expand, (1 × 1) filter is used in the two-dimensional convolutional layer 
along with ReLU as the activation mechanism. In the depthwise layer, 
depthwise 2D convolution is used which is composed of (3 × 3) filters. 
Depthwise convolution is different from the traditional two-dimensional 
convolutional layers where the prior one applies different filters for each 
channel and then merges them. The projection layer applies traditional 
two-dimensional convolution consisting of (1 × 1) filters. Both depth
wise CONV and Expansion CONV applies ReLU following Batch 
Normalization after two-dimensional convolution. Compressed CONV 
does not apply any activation and directly forwards the data after 
applying convolution (Table 4).

Each bottleneck layer consists of three modules, expansion convo
lution with ReLU, depthwise convolution with ReLU, and normal two- 
dimensional convolution without ReLU. Also, a skip connection or 
simple value concatenation is performed between input and output if the 
number of channels (3rd dimension) matches.

3.2.5. Baseline architecture
In this study, we have also tested a custom baseline architecture that 

is comparatively much simpler in design than the rest of the well-known 
architectures. The main goal was to understand how large-scale deep 
architectures perform in solving the Phuti Karpas leaf recognition 

Table 4 
Summarized information of the feature maps of MobileNetV2 architecture.

Layer #Filters/Neurons Filter size Stride Size of feature map Activation function

Image ​ ​ ​ 227 × 227 × 3* –
CONV 32 3 × 3 2 114 × 114 × 32 ReLU
Depthwise CONV 32 D 3 × 3 ​ 114 × 114 × 32 ReLU
Compressed CONV 16 1 × 1 ​ 114 × 114 × 16 –
Bottleneck 1 24 E 1 × 1, D 3 × 3, 2 57 × 57 × 24 ReLU 

–C 1 × 1
Bottleneck 2 24 E 1 × 1, D 3 × 3, 

C 1 × 1
1 57 × 57 × 24 ReLU 

–
Bottleneck 3 32 E 1 × 1, D 3 × 3, 

C 1 × 1
2 29 × 29 × 32 ReLU 

–
Bottleneck 4 32 E 1 × 1, D 3 × 3, 

C 1 × 1
1 29 × 29 × 32 ReLU 

–
Bottleneck 5 32 E 1 × 1, D 3 × 3, 

C 1 × 1
1 29 × 29 × 32 ReLU 

–
Bottleneck 6 64 E 1 × 1, D 3 × 3, 

C 1 × 1
2 15 × 15 × 64 ReLU 

–
Bottleneck 7 64 E 1 × 1, D 3 × 3, 

C 1 × 1
1 15 × 15 × 64 ReLU 

–
Bottleneck 8 64 E 1 × 1, D 3 × 3, 

C 1 × 1
1 15 × 15 × 64 ReLU 

–
Bottleneck 9 64 E 1 × 1, D 3 × 3, 

C 1 × 1
1 15 × 15 × 64 ReLU 

–
Bottleneck 10 96 E 1 × 1, D 3 × 3, 

C 1 × 1
1 15 × 15 × 96 ReLU 

–
Bottleneck 11 96 E 1 × 1, D 3 × 3, 

C 1 × 1
1 15 × 15 × 96 ReLU 

–
Bottleneck 12 96 E 1 × 1, D 3 × 3, 

C 1 × 1
1 15 × 15 × 96 ReLU 

–
Bottleneck 13 160 E 1 × 1, D 3 × 3, 

C 1 × 1
2 8 × 8 × 160 ReLU 

–
Bottleneck 14 160 E 1 × 1, D 3 × 3, 

C 1 × 1
1 8 × 8 × 160 ReLU 

–
Bottleneck 15 160 E 1 × 1, D 3 × 3, 

C 1 × 1
1 8 × 8 × 160 ReLU 

–
Bottleneck 16 320 E 1 × 1, D 3 × 3, 

C 1 × 1
1 8 × 8 × 320 ReLU 

–
CONV 1280 1 × 1 ​ 8 × 8 × 1280 ​
Batch Normalization ​ ​ ​ 8 × 8 × 1280 ​
ReLU ​ ​ ​ 8 × 8 × 1280 ​
Avg Pool ​ ​ ​ 1 × 1 × 1280 ​
FC 2 ​ ​ 2* SoftMax
Total number of parameters including auxiliary networks = 2,260,546 

Total number of trainable parameters including auxiliary networks = 2,226,434

N.B.: E, D, and C are used to denote expansion, depthwise, and compressed convolution.
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problem than a very simple architecture. This approach helps to un
derstand both the challenges and novelties that come with using deep 
large-scale architectures.

Our developed custom architecture is inspired by the AlexNet ar
chitecture. In the similar fashion it first gradually increases the number 
of channels in the feature maps with the combination of two convolution 
(CONV) and max pooling (Max Pool) blocks and a single convolution 
block. Then using similar types of two CONV-Max Pool blocks it starts 
decreasing the number of channels in the feature map. Then using two 
fully connected layers and a single SoftMax layer it generates the class 
predictions for an input image of (227 × 227 × 3) dimension. After each 
CONV layer, a batch normalization layer is added to regularize the 
feature maps. The novelty of this architecture is that it is much lighter in 
weight compared to the AlexNet in the number of parameters. In Fig. 7, 
we have shown a visualization of our baseline architecture. For each 

convolutional block we have shown the number of filters, the kernel size 
and the output feature maps. Each convolutional block uses ReLU acti
vation function. Also, the output of convolutional block is passed 
through a batch normalization layer before passing thorough a max 
pooling layer. Dropout normalization of 0.5 is also applied over the 
output of fully connected layers. The total number of parameters in this 
architecture is 3,251,802.

In this section, we presented a discussion regarding the wide known 
image classification architectures and our proposed one custom baseline 
architecture. Classification of Phuti Karpas plants is crucial due to not 
having enough amount of trainable data. In the subsequent sections, we 
present our findings in terms of evaluating performance of different 
architectures in properly classifying Phuti Karpas plants. We believe, our 
contribution will pave a great path in identifying Phuti Karpas plants in 
nature under different circumstances and will be helpful in reviving this 

Fig. 7. Visualization of the layers of the custom baseline architecture.

Fig. 8. Snapshot of the custom dataset used in this study. This study categorizes the instances within two classes – Phuti Karpas and Non-Phuti Karpas. In the image, 
the upper and lower row represent the non-Phuti and Phuti-karpas instances. In the upper row, the first image is of Strawberry, second image is of Alstonia Scholaris, 
third image is of Arjun and fourth image is of Basil. Amalgamation of all such images (13 classes each having 91 instances) are considered under a single class 
denoting Non-Phuti Karpas.
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endangered entity.

4. Dataset description, implementation, and performance 
evaluation

The primary goal of this study was to investigate the performance of 
CNN-based architectures to correctly recognize Phuti Karpas Plants. This 
study has tested five architectures in this regard and reported their re
sults. The architectures were AlexNet, IncpetionNetV1(Inception), 
VGG16, MobileNetV2 and a simple custom developed baseline archi
tecture. All the architectures were investigated in detail to see how they 
perform in recognizing the problem of Phuti Karpas plants.

This work has used a new dataset to address the problem. In the 
dataset, there was no separation between the training and testing data. 
Therefore, cross-validation has been used to analyze the performance of 
the architectures based on different metrics. All the experiments were 
conducted in a 64-bit machine having AMD Ryzen 9 5900x 12 Core 
processor × 24, Nvidia RTX 3090 GPU, 128 GB RAM and Ubuntu 20.04 
LTS operating system. The architectures were implemented in python 
language using Keras, a deep learning API, and TensorFlow, an end-to- 
end open-source platform for machine learning [32].

4.1. Dataset collection and pre-processing

In the dataset, there were in total of 2354 instances, where 1171 
images were of Phuti Karpas plants’ and the remaining 1183 were of 
other different healthy leaves such as Alstonia Scholaris, Arjun, Basil, 
Catharanthus Roseus, Chinar, Gauva, Jamun, Jatropha, Lemon, Mango, 
Pomegranate, Pongamia Pinnata, and Strawberry. Except from Cathar
anthus Roseus and Strawberry leaves, all were collected from Kaggle 
[33]. Phuti Karpas plants’ images were collected manually using a 
smartphone camera in a normal light condition found between 9 and 11 
a.m. in the month of March. In total, 91 samples were collected from 
each type of leaves for the aforementioned 13 categories and compiled 
into one major category under Non-Phuti Karpas plants [33], provided a 
dataset of both healthy and diseased plants. Only the healthy plants 
were randomly chosen for each category. Images were collected using a 
smartphone device’s camera. Catharanthus Roseus and Strawberry 
leaves were also manually collected and curated by us through capturing 
images using a smartphone device.

The main challenge of this study was to design a CNN-based archi
tecture that would properly recognize the Phuti Karpas plants among the 
others. Therefore, there were two class labels that have been considered, 
a Phuti Karpas plant and a non-Phuti Karpas plant. Some images from 
the dataset have been shown in Fig. 8. The upper row shows images of 
non-Phuti Karpas instances and the bottom row shows various images of 
the Phuti karpas plants. Through pre-processing all the images were 
scaled having dimensions of (227 × 227 × 3) where 3 denotes the 
number of color channels in RGB sample space. Also, through pre- 
processing the backgrounds of images were uniformed to color black 
using built in python modules OpenCV.

4.2. Performance evaluation and discussion

In this section, all the experimented architectures are evaluated on 
various metrics and aspects. The following subsections will contain a 
brief description of each of the addressed factors. The architectures are 
implemented in Python and using the Keras deep learning library. The 
experiments are conducted in a Google Colab environment with a 16 GB 
RAM and under both GPU and CPU processing capabilities to understand 
the associated processing factors.

In Tables 5 and 6, information related to the training setup has been 
presented. For each architecture, we have fixed a maximum of 100 
epochs to run, and the batch size was fixed as 10. We have also used 
early stopping criteria where the monitoring metric and patience has 
been provided in Table 6.

Our training procedure was conducted in GPU. But we also experi
mented in the CPU environment so that we can get an estimation about 
the performance in low powered devices. In the GPU environment, all 
the architectures can perform very fast and so their differences are very 
insignificant. But in the CPU environment, it is found that the baseline 
architecture works fastest among the other architectures. The main 
reasoning is the number of numeric computations is comparatively 
lesser in this architecture than the others. Though the total number of 
parameters is the least in MobileNetV2, it contains a significant number 
of layers making it a very deep architecture which leads to a good 
number of numerical calculations during processing. The other archi
tectures’ timing variation is also representative of their number of layers 
and the parameters to train.

4.2.1. Accuracy
In this section, we will discuss the accuracy observed across different 

cross-validation datasets for each of the architectures. The summarized 
results have been presented in Table 7. A pictorial representation of the 
table’s data has also been shown in Fig. 9.

From this experiment, we have observed that there is not any single 
architecture that always works best for each cross-validation set. But 
based on the average accuracy value, AlexNet has been found giving the 
best performance whereas MobileNetV2 is very close and falls behind by 
a little margin. The baseline architecture provides the third best per
formance exceeding the known architecture InceptionNet. InceptionNet 
and VGG16 lie in the fourth and fifth position respectively. Now, if we 
observe the head-to-head comparison to the best performance in each 
fold, we might summarize it as follows. 

• MobileNetV2 has provided the best accuracy performance in six 
folds.

• AlexNet has provided the best accuracy performance in five folds.
• Baseline architecture has provided the best accuracy performance in 

three folds.
• Inception has provided the best accuracy performance in two folds.
• In the head-to-head comparison, VGG16 has never provided accu

racy performance equivalent to the best in any fold.

Table 5 
Information about Batch size, Epoch, and training time.

Rank Name Average 
training 
time (ms) 
per batch 
(CPU)

Average 
training 
time (ms) 
per batch 
(GPU)

Average 
training 
time (ms) 
per epoch 
(CPU)

Average 
training 
time (ms) 
per epoch 
(GPU)

2nd AlexNet 66 0.04 23000 8
4th Inception 246 0.35 11000 70
5th VGG16 2000 2 298000 380
3rd MobileNetV2 216 0.3 41000 58
1st Baseline 26 0.02 6000 4

Table 6 
Information about Loss function, Optimizer, Learning Rate, and Early stopping 
callback used during training across different architectures.

Loss function Categorical Cross Entropy
Optimizer Stochastic Gradient Descent (SGD)
Learning 

Rate
For each architecture, the learning rate was 0.001 except for the 
Inception architecture. 
In Inception architecture, progressive learning rate was used where 
the initial learning rate was 0.01 and dropped as the power of 0.96 
over the interval of 8 epochs. 
The rates were set based on general practice for each architecture.

Early 
stopping

Monitor metric = validation loss 
patience = 20
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Therefore, it can be said that based on the average fold accuracy, 
AlexNet provides comparatively better performance than MobileNetV2, 
but in the head-to-head comparison, MobileNetV2 has given better 
performance. MobileNetV2 falls behind because in some of the epochs, 
the accuracy has reduced significantly whereas AlexNet has never fallen 
very behind in accuracy.

4.2.2. Precision and recall
This section will summarize the performance status observed in 

precision and recall of all the tested architectures across different cross- 

validation folds. Precision denotes the ratio of the number of true pos
itives with respect to all the positive instances observed for a class and 
recall denotes the ratio of the positive instances over all the expected 
instances for a particular class. Similar to the discussion regarding ac
curacy, results observed in precision represent a similar performance 
pattern that is summarized in Table 8. Similar to previous discussion, a 
pictorial representation has also been presented in Fig. 10.

From Table 8, we can see that, there is not any single architecture 
that has performed best in each and every fold. However, we can get an 
overall recapitulated idea if we consider the average statistics across all 

Table 7 
The Accuracy observed in each cross-validation fold during training across different architectures over the testing dataset. In each fold lies 80 % training data, 10 % 
testing data, and 10 % validation data.

Fold AlexNet (%) Inception (%) VGG16 (%) MobileNetV2 (%) Baseline (%)

1 98.31 97.88 97.81 100a 98.31
2 99.15 99.58a 98 99.58a 98.73
3 99.15a 98.73 96.61 96.19 98.73
4 99.58a 98.73 98.73 98.73 99.58a

5 100a 98.31 99.58 100a 100a

6 99.15a 97.88 97.88 99.15a 99.15a

7 98.73 99.58a 98.73 99.58a 98.31
8 99.58 99.58 97.88 100a 99.15
9 98.31 98.31 98.31 99.58a 98.31
10 99.58a 99.15 99.58 97.88 98.73
Average 99.15a 98.77 98.31 99.07 98.9
Rank Summary 1st 4th 5th 2nd 3rd

a Denotes the best performance observed in that particular fold.

Fig. 9. Bar Chart Representation of the observed accuracies of each architecture in each fold.

Table 8 
Precision values observed for each architecture across different cross-validation folds. (*) Operator denotes the best performance observed.

Fold AlexNet (%) Inception (%) VGG16 (%) MobileNetV2 (%) Baseline (%)

1 98.26 97.98 97.8 100* 98.26
2 99.17 99.58* 98.23 99.58* 98.77
3 99.08* 98.76 96.58 96.28 98.64
4 99.58* 98.74 98.74 98.74 99.58*
5 100* 98.47 99.61 100* 100*
6 99.15 97.85 97.84 99.21* 99.12
7 98.74 99.58* 98.73 99.58* 98.33
8 99.59 99.59 97.87 100* 99.15
9 98.37 98.25 98.3 98.55* 98.37
10 99.5* 99.13 99.5 97.76 98.53
Average 99.14* 98.79 98.32 98.97 98.88
Rank Summary 1st 4th 5th 2nd 3rd
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the folds. Here AlexNet provides the best average performance observed 
across different epochs as well. Second best performance has been 
observed from MobileNetV2. MobileNetV2 demonstrated impressive 
performance in some folds, but due to exhibiting poor performance in 
some folds (E.g., Fold 3, Fold 10, etc.) the overall performance 

deteriorated. Similar to previous discussion, though our proposed 
customized lightweight baseline architecture did not exhibit the best 
performance but it provided a very competitive performance across each 
fold. Most noticeably, in Fold 3, where even MobileNetV2 degraded its 
performance radically, our custom architecture possessed an overall 

Fig. 10. Bar Chart Representation of the observed precision scores of each architecture in each fold.

Table 9 
Recall values observed for each architecture across different cross-validation folds. (*) Operator denotes the best performance observed.

Fold AlexNet (%) Inception (%) VGG16 (%) MobileNetV2 (%) Baseline (%)

1 98.35 97.78 97 100 98.35
2 99.15 99.57 98.31 99.58 98.72
3 99.22 98.68 96.58 96.03 98.84
4 99.58 98.73 99 98.73 99.58
5 100 98.17 99.54 100 100
6 99.15 97.8 97.95 99.1 99.2
7 98.73 99.57 98.73 99.57 98.3
8 99.57 99.57 97.89 100 99.17
9 98.24 98.41 98.3 99.6 98.24
10 99.64 99.13 99.64 97.83 98.91
Average 99.16** 98.74 98.29 99.04 98.93
Rank Summary 1st 4th 5th 2nd 3rd

Fig. 11. Bar Chart Representation of the observed recall scores of each architecture in each fold.
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constant performance. In terms of the average statistics, Inception ar
chitecture comes at the fourth place. It also showed a good performance, 
however average result deteriorated due to exhibit poor performance 
across fold 6. VGG16 ranks in the fifth position demonstrating a weaker 

performance almost across all the folds.
We have also shown the results that have been observed from the 

recall across different folds. From Table 9, a summarized status 
regarding this can be seen. The results represent the pattern already 

Fig. 12. Loss variation observed during training of AlexNet for fold 5, 6, 7, 8, and 9, respectively from left to right.

Fig. 13. Loss variation observed during training of Inception for fold 5, 6, 7, 8, and 9, respectively from left to right.
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observed and discussed prior to the accuracy and precision where 
AlexNet provides the best performance and second to it is found from 
MobileNetV2. A pictorial representation has also been shown in Fig. 11. 

Similar to the previous discussion, we can see that, the performance of 
all the architectures is quite competitive. Though, in terms of average 
statistics, AlexNet holds the first position, MobileNetV2 exhibits 

Fig. 14. Loss variation observed during training of VGG16 for fold 5, 6, 7, 8, and 9, respectively from left to right.

Fig. 15. Loss variation observed during training of MobileNetV2 for fold 5, 6, 7, 8, and 9, respectively from left to right.
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Fig. 16. Loss variation observed during training of Custom Baseline for fold 5, 6, 7, 8, and 9, respectively from left to right.

Fig. 17. Accuracy variation observed during training of AlexNet for fold 5, 6, 7, 8, and 9, respectively from left to right.
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impressive performance in some folds but just like the prior discussion 
due to performing worse in some folds the average value deteriorated. 
Our custom baseline architecture holds a constant performance across 

all the folds in terms of recall values also. Inception architecture holds its 
place in the fourth position. It also presented a competitive performance 
as already discussed but falls a bit behind in folds such as – 1st, 5th and 

Fig. 18. Accuracy variation observed during training of Inception for fold 5, 6, 7, 8, and 9, respectively from left to right.

Fig. 19. Accuracy variation observed during training of VGG16 for fold 5, 6, 7, 8, and 9, respectively from left to right.
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6th. VGG16 showed a weaker performance in almost all the folds except 
the 10th fold.

4.2.3. Loss and accuracy variation during training
In this sub-section, we will observe the training status to understand 

how the loss and accuracy are varied over epochs in different folds. 
Figs. 12-16 and Figs. 17-21 illustrates loss and accuracy variations 

Fig. 20. Accuracy variation observed during training of MobileNetV2 for fold 5, 6, 7, 8, and 9, respectively from left to right.

Fig. 21. Accuracy variation observed during training of Custom Baseline for fold 5, 6, 7, 8, and 9, respectively from left to right.
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during training of AlexNet, Inception, VGG16, MobileNetV2, and base
line, respectively. This will help us to understand the architecture’s 
learning behaviour along with the convergence pattern. For ease of 
understanding, we have provided the results for five folds for each of the 
architectures. The patterns were found similar in the remaining folds.

The change in the training loss was found stable in all the architec
tures. Main distinguishing pattern was observed in the validation loss. 
During training of AlexNet, we have seen that the loss variation to a very 
minimum level. It converged very early and stayed stable during the 
remaining epochs. Only in epoch 7, there were some abrupt changes. 
The change in loss was also found mostly stable in the Inception archi
tecture. A bit of instability was observed only in fold 5 where some 
sudden spike is found. VGG16 provided mainly two types of loss curves. 

One is seen in fold 5, 8 and 9 where it mostly stays stable with some 
intermediary spikes. The second type can be observed in fold 6 and 7 
where it suddenly reduces loss and stays mostly in that way. The loss 
changing behaviour of MobileNetV2 was very unstable, it showed a 
significant number of spikes through the epochs in all the folds. The 
behaviour of baseline architecture was very similar to the AlexNet 
mostly because the prior one was designed being inspired by it. It was 
found very stable during the learning, but a sudden shift can only be 
observed only in fold 9 in later epochs.

Similar to the previous discussion, we shall mainly focus on the ac
curacy over the validation data or unseen data. The change in accuracy 
over the training data was seen stable in all the folds for all the archi
tectures over the epochs. The accuracy variation of AlexNet was found 
stable. There were a small number of intermediary spikes (fold 7 and 9), 
but mostly the change was found stable. The change in accuracy of 
Inception architecture over epochs in different folds was found very 
stable overall. VGG16’s accuracy variation was found unstable mostly in 
the earlier epochs with significant abrupt changes. But with gradual 
progression it started to converge and remained overall stable at the end 
of the epochs. This behaviour was found overall in the folds. Mobile
NetV2’s behaviour was found very chaotic with a lot of abrupt shifts in 
the accuracy which is similar to its corresponding abrupt shifting in the 
loss in the same folds. A possible reason can be the number of data was 

Table 10 
Trained Model’s size of different architectures found in hdf5 (Hierarchical data 
format version 5).

Rank Name Size (Megabytes) Total number of parameters

4th AlexNet 466.4 58,295,042
3rd Inception 41.5 10,309,430
5th VGG16 537.1 134,268,738
1st MobileNetV2 9.4 2,260,546
2nd Baseline 13.1 3,251,802

Fig. 22. Loss variation during training of AlexNet, Inception, VGG16, MobileNetV2, and baseline respectively. Each row represents charts for each architecture 
respectively. For fold 5, 6, 7, 8, and 9 results have been shown from left to right order in each row.
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not enough to train this architecture in a stable manner. Though overall, 
the accuracy achieved by MobileNetV2 was found pretty impressive and 
very close to the best accuracy observed in this problem.

Baseline architecture’s accuracy convergence behaviour was found 
very similar to the AlexNet, mostly being stable. Only in the fold 10 some 
abrupt changes can be observed in the later epochs which should be 
related to the change in the loss as discussed.

4.2.4. Model parameters and size
In this section, we shall provide the size of the trained weight files for 

each of the architectures to understand the required memory usage. 
From Table 10, we can get an idea about the required model size to store 
a trained model in the application device for each architecture. It is 
found that, VGG16 requires the most and MobileNetV2 requires the least 
amount of memory. This number is directly proportional to the number 
of architecture’s parameters.

4.3. Deployment as an android application

To test the proposed model, an Android application is also designed 
with Android Studio using a desktop computer with AMD Ryzen5 3600 
(4 GHz), Windows 10 Pro (64-bit) operating system, 16.0 GB RAM, GPU 
(Dedicated 6 GB NVIDIA GeForce GTX1660ti), and 1 TB Solid State 
Driver. The app is finally tested in Xiaomi Mi A1 based on stock Android 
9. A snapshot of the proposed architecture is shown in Fig. 24.

So, in summary, the identification of the Phuti Karpas tree presents 
significant challenges due to the complexity and diversity of plant spe
cies. Traditional identification methods relying on visual inspections are 
inadequate, as they fail to account for variations influenced by envi
ronmental factors and seasonal changes. This study leverages advanced 
computational techniques through Convolutional Neural Networks 
(CNNs) to enhance the automatic classification of the Phuti Karpas tree. 
Various architectures, including AlexNet, Inception, VGG16, and 
MobileNetV2, were implemented and evaluated using a custom dataset 
of leaf images. Experiments were conducted in a Google Colab envi
ronment with both CPU and GPU processing, measuring key perfor
mance metrics such as accuracy, precision, and recall across multiple 
cross-validation folds.

Our findings reveal that AlexNet achieved the highest average ac
curacy, while MobileNetV2 displayed competitive efficiency with a 
significantly smaller model size. The baseline architecture, despite its 
fast training times, did not match the performance of AlexNet or 
MobileNetV2. The study underscores the effectiveness of deep learning 
approaches in plant species classification, providing valuable insights 
into feature extraction and model performance. Furthermore, deploying 
the trained model as an Android application enables real-time identifi
cation of the Phuti Karpas plant, offering practical implications for 
agricultural practices and conservation efforts. Overall, this research 
addresses critical challenges in automatic plant identification, demon
strating how advanced machine learning techniques can improve 

Fig. 23. Accuracy variation during training of AlexNet, Inception, VGG16, MobileNetV2, and baseline. Each row represents charts for their corresponding archi
tecture. Results for fold 5–9 have been shown from left to right order in each row.
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accuracy and efficiency in plant taxonomy.

5. Discussion and summary

This section presents a summary of all the architectures that have 
been tested in this study based on different metrics along with their pros 
and cons. Table 11 summarizes the pros and cons of all the architectures 
already been addressed. Based on the points, the users would be able to 
decide which architecture would be useful for their application and 
device that are going to be used.

6. Limitation and future directions

The core novelty of this work is providing a curated collection of data 
for Phuti Karpas plants and the evaluation of widely used CNN-based 
architectures in detecting the aforementioned plant from a wide range 
of samples of different plants. Through a robust evaluation, we have 
presented the limitations and constrained for all the architectures in 
terms of accuracy, precision, recall, learning pattern and the underlying 
challenges while deploying as a mobile application.

This work bears a number of limitations that can be addressed in the 
later iterations of this work. For example, a crucial factor is the 

limitation of dataset. Though the resource is quite scarce but a wide 
incorporation of more data could be useful in improving the perfor
mance of the currently used deep architectures. As our work is a pio
neering direction in formulating a deep-learning based approach in 
detecting Phuti Karpas we have used a set of widely acknowledged deep 
learning based architectures for the evaluation and a custom light- 
weight baseline architecture. In the follow-up extension of this work, 
it would be a great opportunity to explore different architectures as well 
including hyper tunning the parameters or developing a grid-search 
alike parameter finding algorithm in this context. Experimenting with 

Fig. 24. A snapshot of the developed Android application to recognize a Phuti 
Karpas plant in real-time.

Table 11 
Summarized discussion regarding the pros and cons of all the tested 
architectures.

Pros Cons

AlexNet • AlexNet has provided the best 
average accuracy in the phuti 
karpas leaf recognition 
problem. Based on precision 
and recall it also stands in the 
first position among others.

• Its loss and accuracy 
changing behaviour was 
found mostly very stable.

• Its processing time was also 
found very moderate.

• The major con of this 
architecture is its required 
size to store the model’s 
weights. It is heavy weighted 
and ranks fourth based on 
lightness in weight among 
the architectures.

Inception • This architecture ranks third 
among the architectures 
based on lightness in storing 
the weights.

• This architecture provides 
stable change in training in 
loss and accuracy variation.

• This architecture has ranked 
fourth in the average 
accuracy, precision and 
recall over all the 
architectures with a 
difference of 0.38 %, 0.37 % 
and 0.42 % from the AlexNet 
in the metrics respectively.

• This architecture also takes a 
good amount of time during 
training and ranks fourth 
though the difference is not 
much significant compared 
to the MobileNetV2.

VGG16 • This architecture provides 
stable performance during 
training while loss and 
accuracy variation.

• This architecture ranks fifth 
in the average accuracy, 
precision and recall over all 
the architectures having a 
difference of 0.84 %, 0.82 % 
and 0.87 % from AlexNet in 
the metrics respectively.

• It is the most weighted 
architecture among all the 
architectures tested.

• It also takes the most amount 
of time during training.

MobileNetV2 • MobileNetV2 has provided 
the second best performance 
in accuracy, precision and 
recall for our addressed 
problem. The difference is 
very insignificant and close to 
the AlexNet.

• A major advantage of this 
architecture is it is very 
lightweight and ranks first 
among all the architectures 
that have been tested based 
on the lightness in weight.

• As this architecture is very 
deep, the processing time to 
receive the labelling verdict 
for an input image is high.

• Its change in loss and 
accuracy during training was 
also found very unstable.

Baseline • This architecture’s processing 
speed is the fastest among all 
the tested architectures.

• It is also the second lightest in 
weight among all the 
architectures.

• Its learning curve for loss and 
accuracy during training was 
found mostly stable with a 
very few abrupt changes.

• It ranks third in the average 
accuracy, precision and 
recall metric among the 
architectures with a 
difference of 0.16 %, 0.26 % 
and 0.23 % respectively from 
AlexNet.
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ensembled methods or transfer-learning based approaches can also be a 
potential direction for the extension of this work. Preprocessing is also 
an important part of the current version of this work which is a bit 
challenging in real-life settings, more generalized dataset or approaches 
can be investigated in this regard the make the solutions more robust.

7. Conclusion

Research studies on plant recognition and classification have grown 
exponentially. It has become an operational priority to monitor the 
growth of trees, production of fruits, disease, and pest control for plant 
management. In the past few years, research on plant recognition and 
identification using the Machine Learning and Image classification 
methods has increased significantly. Even though prevalent methods 
such as object-based image analysis and UAV imagery methods can work 
effectively on plant and tree recognition, Machine Learning methods 
such as CNN can deal effectively with large datasets providing sufficient 
accuracy for recognition and classification problems. In this study, 
different existing Convolutional Neural Network architectures along 
with a new architecture have been used to address the Phuti Karpas 
plant detection problem. For this study, a raw dataset was collected 
consisting of several images of the Phuti Karpas plant for training. Also, 
a custom dataset was prepared containing various Non-Phuti karpas 
instances for a fairground comparison. Full dataset was pre-processed so 
that they contain similar size and similar type of background. Then the 
experiment was conducted using the architectures, AlexNet, Inception, 
VGG16, MobilNetV2, and baseline over different metrics. AlexNet has 
provided the best average accuracy, precision and recall score in 10-fold 
cross validation though it poses some disadvantages such as being 
extremely heavy weighted architecture. MobileNetV2 has provided the 
second-best performance in the accuracy, precision and recall metrics 
and falls behind for a very small margin. It is a very light weighted ar
chitecture though its processing time is quite significant and possesses 
severe instability during training observed over the validation dataset. 
baseline architecture, inspired by AlexNet, performs neither best nor 
worst and provides a moderate performance in all the metrics. Inception 
and VGG16 have been found to perform worse comparatively than the 
others due to being very deep and heavy parameterized respectively. 
This study has tried to investigate all the important metrics so that it can 
guide the users about their usage considering their resource re
quirements and constraints. As an ongoing work, the future extensions 
will focus on evaluating other architectures along with focusing on 
identifying other types of Karpas plants in a robust manner.
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