
Revival of Muslin by Phuti Karpas plant identification with convolution
neural network

Redwan Ahmed Rizvee a,b, Omar Farrok c, Mahamudul Hasan b,* , Faisal Farhan c,
Md Hafanul Islam b, Md Khalid Hasan b, Abidur Rahman c, Maheen Islam b, Md Sawkat Ali b,
Taskeed Jabid b, Mohammad Rifat Ahmmad Rashid b, Mohammad Manzurul Islam b

a Department of Computer Science and Engineering, University of Dhaka, Dhaka, 1000, Bangladesh
b Department of Computer Science and Engineering, East West University, Dhaka, 1212, Bangladesh
c Department of Electrical and Electronic Engineering, Ahsanullah University of Science and Technology, Tejgaon, Dhaka, 1208, Bangladesh

A R T I C L E I N F O

Keywords:
AlexNet
CNN
Machine learning
Plant recognition
Tree identification
VGGNet

A B S T R A C T

Phuti Karpas, historically central to cotton production and thought extinct, has re-emerged in botanical research,
prompting a need for reliable identification methods. This study develops a systematic approach for classifying
Phuti Karpas leaves using various convolutional neural networks (CNNs), including AlexNet, Inception, VGG16,
MobileNetV2, and a custom-designed baseline model. A unique dataset of 2354 leaf images was curated, with
two main classes: Phuti Karpas and Non Phuti Karpas, the latter including 14 other plant types to enhance model
robustness. Each model was evaluated on metrics like accuracy, precision, recall, computational time, and
memory efficiency. AlexNet yielded the highest average accuracy, while the custom baseline model, optimized
for mobile deployment, provided comparable accuracy with faster inference. To demonstrate real-world us
ability, an Android app was created for real-time Phuti Karpas identification, offering an accessible tool for field
researchers and conservationists. This work not only advances deep learning applications in plant taxonomy but
also aids in the cultural and scientific revival of Phuti Karpas.

1. Introduction

In recent times, studies on the automatic plant identification and
classification have drawn increased attention. Professionals such as
agronomists, biologists, foresters, etc. are interested in classifying plants
into relevant taxonomies [1]. Usually, plant identification and classifi
cation can be accomplished by visually inspecting the plant features,
such as floral parts, leaves, plant fruits, etc. Modern computer vision
techniques and several mobile applications are being developed to make
the task of plant classification and identification easier [2]. Plant cate
gorization in the modern era has become an essential task because of the
applications of different plant species in the field of medicine and
agriculture. The application also includes weed detection, growth esti
mation, and disease diagnosis [2]. Also in the field of medicine, different
plant species are used as medicine to eradicate diabetes and

cardiovascular diseases [3–6]. Plant taxonomy is used to categorize
plants, where plants are divided into hierarchical groups, that may be
searched endlessly based on biased plant features, according to recent
studies[7]. This work also explores computer vision-based deep learning
techniques in classifying a specific type of rare plant entitled, Phuti
Karpas. It also evaluates the feasibility of designing a custom architec
ture that provides a competitive performance in accuracy with a quality
computational efficiency by making the solution suitable for real-life
mobile devices (see Figs. 22 and 23).

A good number of research works have concluded that the task of
plant identification and classification based on plant leaves are more
convenient and reliable [1,5]. However, due to the huge number of plant
species and innumerable labeled or unlabelled data, visual identification
of the plant species through manual inspection has become quite chal
lenging [1]. Also, the variations in light, posture, and orientation impact

* Corresponding author.
E-mail addresses: rizvee@cse.du.ac.bd, redwan.rizvee@ewubd.edu (R.A. Rizvee), omarruet@gmail.com, omar.eee@aust.edu (O. Farrok), munna09bd@gmail.

com (M. Hasan), faisalfarhan.eee@aust.edu (F. Farhan), mdhafanul@gmail.com (M.H. Islam), khalidrion@gmail.com (M.K. Hasan), abidr92@gmail.com
(A. Rahman), maheen@ewubd.edu (M. Islam), alim@ewubd.edu (M.S. Ali), taskeed@ewubd.edu (T. Jabid), rifat.rashid@ewubd.edu (M.R. Ahmmad Rashid),
mohammad.islam@ewubd.edu (M.M. Islam).

Contents lists available at ScienceDirect

Array

journal homepage: www.sciencedirect.com/journal/array

https://doi.org/10.1016/j.array.2025.100428
Received 1 September 2024; Received in revised form 19 December 2024; Accepted 11 June 2025

Array 27 (2025) 100428

Available online 16 June 2025
2590-0056/© 2025 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://orcid.org/0000-0002-4311-8688
https://orcid.org/0000-0002-4311-8688
mailto:rizvee@cse.du.ac.bd
mailto:redwan.rizvee@ewubd.edu
mailto:omarruet@gmail.com
mailto:omar.eee@aust.edu
mailto:munna09bd@gmail.com
mailto:munna09bd@gmail.com
mailto:faisalfarhan.eee@aust.edu
mailto:mdhafanul@gmail.com
mailto:khalidrion@gmail.com
mailto:abidr92@gmail.com
mailto:maheen@ewubd.edu
mailto:alim@ewubd.edu
mailto:taskeed@ewubd.edu
mailto:rifat.rashid@ewubd.edu
mailto:mohammad.islam@ewubd.edu
www.sciencedirect.com/science/journal/25900056
https://www.sciencedirect.com/journal/array
https://doi.org/10.1016/j.array.2025.100428
https://doi.org/10.1016/j.array.2025.100428
http://creativecommons.org/licenses/by/4.0/

the recognition task greatly. Over the time, the alteration in leaf and its
colour change under diverse climate conditions entails many difficulties.
Thus, due to plant diversity, variations in clutter, orientation, back
ground, viewing perspective, etc, recognizing plant species from videos
or pictures is challenging [2]. Due to the underlying challenges and
versatile variations in features embedded in different plant species a
significant number of studies have been addressing the plant recognition
and classification problem with the goal of improving current
performance.

The discriminative plant features, such as unique colour, leaf texture,
ventilation, eccentricity etc. are considered as key features in this regard
[1]. Traditional machine learning approaches have been designed
focusing on the color and shape of the plant [8,9], texture [10,11], and
venation features [12,13] for plant recognition [17,20]. Moreover, with
the advancement of modern deep-learning methods a pool of new so
lutions has emerged due to their efficiency in identifying features
compared to the traditional machine-learning-based methods [14].
Modern deep Convolutional Neural Network (CNN) uses manually an
notated data to extract features automatically in an end-to-end manner
rather than depending on handcrafted features of plants such as color,
shape, and texture [1,7]. Though CNN requires a huge amount of data
for training and faces problems such as overfitting issues, this method is
quite efficient in learning features and giving accurate results [15].

This work focuses on identifying the Phuti Karpas tree plant using
CNN and image processing techniques by studying its different features.
It was widely used in the earlier centuries for producing fine cotton. The
cotton produced from these trees was used for making cotton cloth. They
were widely found in Mesopotamia or present Iraq along with the Tigris
River from 900 BCE – 270 CE. Their similar variety was also prevalent in
Bengal and the cotton cloth produced from these trees was named
“Muslin”. However, over the time being, this tree was disidentified and
as a result Muslin in Bengal was no longer available since the last 200
years. Recently in Bangladesh, it was proposed to get the lost historical
Phuti Karpas tree back, and hence samples of Muslin cloth were
collected from the British Museum for adequate information. The DNA
of Phuti Karpas was identified from dried preserved leaves that were
available in the Royal Botanical Garden. The birthplace of Phuti Karpas
was discovered on the riverbank of the Meghna River with the help of
modern satellites measuring the diversion of the river. After a long
investigation, a tree was found that matched 70 % with the Phuti Karpas
plant in terms of DNA. A modern technology called DNA sequencing was
used to match the DNA of the tree with the Phuti Karpas plant. Then with
the aid of modern agro-technology, necessary steps were taken for their
rebirth in Bengal. Therefore, Phuti karpas has become again a part of
concern and this study focuses on developing an image analysis-based
solution to properly distinguish Phuti Karpas leaves from the others.
We believe that this effort would be supportive for various use cases
related to its leading and widespread adoption of this long-lost precious
agricultural entity. Main contribution of this paper is as follows.

• Collection and pre-processing of a custom-collected dataset con
taining Phuti Karpas plants and other relevant non-Phuti Karpas
instances.

• Evaluating the effectiveness of the existing well known and widely
used CNN-based architectures in recognizing Phuti Karpas plants
along with testing a custom baseline architecture that provides the
fastest speed, moderate accuracy with low resource consumption.

• Comparing the performance of all the architectures in terms of ac
curacy, precision, recall, learning stability, weight storage memory,
and computational time.

• Deployment of the architecture in mobile as an Android application
for various real-life use cases.

In a brief, our work is a pioneering direction in classifying Phuti
Karpas plants. For the training and evaluation, we have custom collected
and prepared a novel Phuti Karpas dataset. Furthermore, we also explore

the quality of well-known deep learning image classification architec
tures in detecting such plants and exhibit the potential to design a
custom architecture with a quality trade-off between speed and
performance.

The rest of this paper is structured as follows. Section 2 comprises
related works. Section 3 discusses existing and the proposed architec
tures. Next, Section 4 includes a discussion of the custom-prepared
dataset along with an extensive performance analysis of the addressed
architectures. Section 5 contains a discussion and summary of the whole
work along and Section 6 provides a discussion on the current limitation
and possible directions for further extensions.

2. Related works

To classify leaves including Phuti Karpas using convolutional neural
networks (CNNs), several systematic approaches can be employed. Each
approach involves capturing and analyzing unique features of the
leaves, such as their shape, pattern, and texture. A short description of
various methods that can be used for this purpose has been provided in
the following.

Baseline CNN Approach starts with a basic CNN model that fits to the
dataset [16]. It includes a few convolutional layers for feature extrac
tion. Pooling layers support to reduce dimensionality of the data. Then
the connected layers relate the extracted features to specific categories.
This is a basic method which is suitable for small datasets.

The approach of Transfer Learning Using Pretrained Models in
fluences existing CNN architecture such as VGG16, ResNet, MobileNet,
which have been pretrained on large datasets [19,21,22]. It can extract
meaningful features from the images. This model can be adopted to
classify leaves effectively. It is useful for a limited number of labeled
data because it minimizes the training time and improves accuracy.
Ensemble learning with multiple CNN combines predictions of multiple
CNNs to make an improved classification system [34–38]. In this
method, each CNN is trained independently focusing on specific features
or patterns of the leaves. By combining the outputs, the final prediction
is obtained. Thus, the prediction becomes accurate. Although this
method is effective, it is resource intensive. For this reason, it requires
high computational resource.

Custom Architectures for Leaf-Specific Features includes CNN ar
chitecture aligned to specific features of Phuti Karpas leaves, such as
their edge shapes, textures, vein structures. Edge detection can focus on
the patterns, which can be processed by specific features within the CNN
architecture [40–44]. This approach is highly customized and leads to
better performance. Applying this approach requires in-depth under
standing of the dataset’s properties.

Lightweight Models for Edge Deployment means application of
lightweight CNN. MobileNet3 is an example of this kind of model. It
requires low computational capacity. It results in high efficiency and
accuracy. The training can further be enhanced with pruning or quan
tization to reduce model and improve inference speed. Thus, it is suit
able for real time applications. Hierarchical classification involves
multistage approaches, and the task is divided into a few levels. Firstly,
CNN broadly categorizes leaves, then another CNN refines the classifi
cation. It identifies specific species. It is effective for datasets with
complex hierarchical relationships.

In Attention Mechanisms for feature integrates attention mecha
nisms into CNNs. It focuses on the unique features of the leaves. This
kind of approach supports the CNN to prioritize specific regions of the
image. It increases the accuracy and interpretability of the model
because of focusing on the most relevant features of the images/data. In
Data Augmentation and Synthetic Data Generation expands the dataset
using augmentation techniques such as rotating, flipping, or adjusting
the color of leaf. Generative Adversarial Networks can create synthetic
data to simulate diverse leaf appearance. They can address the chal
lenges of small datasets. It can provide diverse examples for CNN to
learn from. A precaution of this method is to be careful about inclusion

R.A. Rizvee et al. Array 27 (2025) 100428

2

of unrealistic samples.
It is noteworthy that each of the approaches has its own advantages

and disadvantages. Combined approaches can be applied to obtain
better accuracy. For example, transfer learning can be paired with data
augmentation to improve the utility of a small dataset. Similarly,
lightweight models can incorporate attention mechanisms for proper
classification. Before applying combined approach, dataset size,
computational capacity, and intended application can be considered. By
systematically exploring and implementing the strategies, effective
systems can be built for classifying Phuti Karpas leaves, catering to
diverse scientific and practical needs. Advantages, weaknesses, and
challenges of applying different approaches for identifying Phuti Karpas
are summarized in Table 1. A summary of various possible approaches
for this purpose are illustrated in Fig. 1.

3. Methodology

This section incorporates the detailed discussion on the deployed
architectures for plant leaf identification.

3.1. Convolutional neural network

CNN is a special type of deep learning method, broadly implemented
in image recognition, object classification, and other computer vision
research [18]. A typical CNN mainly constitutes of Convolutional Layers
(CONV), Pooling Layers (Pool), and Fully Connected Layers (FC) [24].
CONV and Pool layers contain different size of filters or kernels. There
also exists various activation functions, e.g., Rectified Linear Unit
(ReLU) function, tanh, etc. to control the firing number of different
neurons (or layers). CNNs are made up of a series of layers that take an
input image, pass through different layers and activation functions, and
predict the output class or label probabilities. One obvious advantage of
CNN is that it takes raw pixel intensity as a flattened input image vector
rather than deploying handcrafted feature extraction methods [39]. The
different layers in CNN consist of some learnable filters that can auto
matically identify the complex filters in an image and after combining
the results of the filters, it can predict the label probabilities or class of
input image [25]. In CNN layer, the neurons are connected to a small
area of previous layer neurons. The first layer detects the minimum level
features; subsequent layers detect mid-level and high-level features,
respectively. CNNs have gained much popularity in image recognition
due to this distinctive technique of building up successive layers that
extract from lower to higher-level features [23].

CONV is an essential layer for CNN architecture as CNN learn fea
tures of an input image by applying filters. The CONV layer mainly
consists of small sized filters usually in the dimension of [3 × 3] or [5×
5] and some feature maps. Instead of going through the full image, the
input volume is convolved with the filters and the characteristics are
learnt at a specific spatial point. After all the required filters have been
implemented to the input volume, the final output volume is created by
combining all to a matching 2-D feature map which was formed as a
filter slide across the network’s width and height. Let the input volume
in CONV layer is represented as [Winconv × Hinconv × Dinconv] that cor
responds to the input image’s spatial dimensions and the output volume

in CONV layer is represented as [Woutconv × Houtconv × Doutconv]. Let the
four hyper parameters that correspond to the filter numbers, filter size,
stride, and zero padding amount are represented as [Kconv, Fconv, Sconv,
Pconv]. The mathematical relationship among the parameters can be
shown as follows.

Woutconv =

(
Winconv – Fconv + 2Pconv

Sconv
+1

)

(1)

Houtconv =

(
Hinconv – Fconv + 2Pconv

Sconv
+1

)

(2)

Doutconv = Kconv (3)

Pooling Layer is termed as the intermediate layer in Convolutional
Neural Network. This layer’s primary function is to compress the size of
the incoming input along the spatial dimensions. A pooling layer can
down sample or compress an incoming volume of [64 × 64 × 12] to a
volume of [32 × 32 × 12]. Hence, it reduces over-fitting and network
computations by down sampling the previous layer’s feature maps
derived from various filters. If, the input volume for a pooling layer is
represented as [Winpool × Hinpool × Dinpool], the output volume is rep
resented as [Woutpool × Houtpool × Doutpool], and the two parameters that
corresponds to the filter size and stride are represented as [Fpool, Spool],
then the mathematical relation that combines all of them can be written
as follows.

Woutpool =

(
Winpool – Fpool

Spool
+1

)

(4)

Woutpool =

(
Hinpool – Fpool

Spool
+1

)

(5)

Doutpool =Dinpool (6)

FC is denoted as the final layer of CNN that predicts the final class or
label based on the given input. The neurons in this layer are completely
linked to the neurons in the previous layer. The output dimension of a
Fully Connected Layer is [WFC × HFC × NFC] where NFC refers to the
number of classes, HFC represent height and WFC represent width that
are considered for classification.

In this research, CNN along with some of its popular architectures
such as AlexNet, VGGNet and a newly proposed network is used for
detecting Phuti Karpas plant. The research involves object recognition
that detects plant in an image and image classification to recognize
which species of plant it belongs to. For this approach the raw dataset of
the plant images is trained and later tested with an unseen image to
predict the labels correctly. Furthermore, the research aims to find out
which of the tested CNN architectures can perform effectively with
higher accuracy for the Phuti Karpas plant recognition.

3.2. CNN architectures

3.2.1. AlexNet
AlexNet is a popularly used network structure of CNNs consisting of

numerous innovations and contributions. This special network structure

Table 1
Advantages, weaknesses, and challenges of applying different approaches.

Approach Strength/Advantages Weakness Challenges

Baseline CNN Simple, easy to implement Limited scalability Limited performance on complex data
Transfer Learning High accuracy, quick/faster training High computational requirements May not capture unique features
Ensemble Learning High accuracy, robust performance/predictions Expensive in resources Time-intensive, risk of overfitting
Custom Architectures Full control, fit to problem Requires domain expertise Requires extensive experimentation
Lightweight Models Can easily be applied Slight trade-off in accuracy May sacrifice accuracy
Hierarchical Classification Captures class relationships, can handle complex datasets More annotation and training needed Complex to implement
Attention Mechanisms Enhanced focus on features Architectural complexity Computationally intensive
Data Augmentation Better generalization, reduces overfitting Risk of overfitting on synthetic data Can introduce noisy transformations

R.A. Rizvee et al. Array 27 (2025) 100428

3

Fig. 1. Illustration of various approaches for classifying/identifying Phuti Karpas in a concise format.

R.A. Rizvee et al. Array 27 (2025) 100428

4

was proposed in Ref. [25] that got much recognition due to its novel
dropout techniques and development of the activation function-ReLU
which resolves over-fitting problem. The function ReLU is preferred
over traditional activation function as it can eradicate gradient vanish
ing problem [26]. It is defined in the following.

ReLU(x)=max(x, 0). (7)

Also, to reduce the overfitting problem, dropout strategy was
employed especially in the fully connected network layers. Dropout
causes neurons to work together, reducing joint adaptation and
improving generalization. One noteworthy characteristic of AlexNet is
that it can improve recognition accuracy very efficiently despite
decreasing the number of parameters. AlexNet’s architecture is made up
of approximately 650,000 neurons and 60 million parameters [26].

Regardless to the fact that AlexNet was run on two graphics processing
units (GPUs), researchers nowadays implement AlexNet using a single
GPU [27]. Several techniques such as overlapping, pooling, and multiple
GPU training are used for training AlexNet to improve the accuracy.

In Fig. 2, AlexNet architecture is visualized to show how the feature
maps are propagated through different layers and activation functions.
For each layer (Convolution, Max Pool, and Fully Connected) a number
of filters or neurons have been shown accordingly. For each convolu
tional layer except the first one, padding was kept such as the input and
output height and width dimensions stay the same. Also, each con
volutional layer uses ReLU as the activation function. To conduct the
experiments in this literature, the input image’s dimensions were 227 ×
227 × 3, where 3 denotes the number of colour channels. Also, the
problem focused on classifying two classes. The total number of

Fig. 2. Visualization of the layers of the AlexNet architecture.

Fig. 3. Visualization of the layers of the VGG16 architecture.

R.A. Rizvee et al. Array 27 (2025) 100428

5

parameters of the AlexNet architecture was 58,295,042 where among
them 58,292,290 were trainable and the reaming were non-trainable
parameter.

3.2.2. VGGNet
VGGNet proposed in Ref. [28], is an improved CNN architecture that

achieved significant improvements compared to AlexNet, ZFNet etc.
VGG16 (13 convolutional layers and 3 fully connected layers) and
VGG19 (16 convolutional layers and 3 fully connected layers) are the
two most common VGG architectures that are widely used in classifi
cation problems [29]. In VGGNet architecture, there are five blocks
where each block starts with a convolutional layer and then moves on to
max-pooling. Basic VGGNet architecture operates by taking input data
and passing them through a convolution layer stack. In Fig. 3, a
block-based diagram has been shown to understand the layers of this
architecture. As previously mentioned, to conduct the experiments in
this literature, the input image’s dimensions were 227 × 227 × 3, where
3 denotes the number of RGB colour channels.

Also, the problem focused on classifying three classes. The scaler
number attached to the convolution (CONV) layer denotes the number
of consecutive layers of convolution and for each convolution layer

Fig. 4. General view of Inception Blocks.

Table 2
Summarized information of the feature maps of InceptionNetV1 architecture.

Layer #Filters/
Neurons

Filter
size

Stride Size of
feature map

Activation
function

Image ​ ​ ​ 227 × 227
× 3*

​

CONV 64 7 × 7 2 114 × 114
× 64

ReLU

Max Pool ​ 3 × 3 2 57 × 57 ×
64

​

CONV 192 3 × 3 1 57 × 57 ×
192

ReLU

Max Pool ​ 3 × 3 2 29 × 29 ×
192

​

Inception
(3A)

​ ​ ​ 29 × 29 ×
256

​

Inception
(3B)

​ ​ ​ 29 × 29 ×
480

​

Max Pool ​ 3 × 3 2 15 × 15 ×
480

​

Inception
(4A)

​ ​ ​ 15 × 15 ×
512

​

Inception
(4B)

​ ​ ​ 15 × 15 ×
512

​

Inception
(4C)

​ ​ ​ 15 × 15 ×
512

​

Inception
(4D)

​ ​ ​ 15 × 15 ×
528

​

Inception
(4E)

​ ​ ​ 15 × 15 ×
832

​

Max Pool ​ 3 × 3 2 8 × 8 × 832 ​
Inception

(5A)
​ ​ ​ 8 × 8 × 832 ​

Inception
(5B)

​ ​ ​ 8 × 8 ×
1024

​

Avg Pool ​ 7 × 7 1 1 × 1 ×
1024

​

Dropout rate = 0.4 ​ ​ ​ ​
FC 2 ​ ​ ​ SoftMax
Auxiliary Network 1
Avg Pool ​ 5 × 5 ​ 4 × 4 × 512 ​
CONV 128 1 × 1 ​ 4 × 4 × 128 ​
FC 1024 ​ ​ 1024 ReLU
Dropout rate = 0.7 ​ ​ ​ ​
FC 2 ​ ​ 2* SoftMax
Auxiliary Network 2
Avg Pool ​ 5 × 5 ​ 4 × 4 × 528 ​
CONV 128 1 × 1 ​ 4 × 4 × 128 ​
FC 1024 ​ ​ 1024 ReLU
Dropout rate = 0.7 ​ ​ ​ ​
FC 2 ​ ​ 2* SoftMax
Total number of parameters including auxiliary networks = 10,309,430

Total number of trainable parameters including auxiliary networks = 10,309,430

N.B.: CONV: Convolutional Layers, Max Pool: Max Pooling Layers, and FC: Fully
Connected Layers.

Table 3
Summarized information of the Inception Layers.

Name # (1
× 1)
Filters

(3 ×
3)
Reduce
filters

(3
× 3)
Filters

(5 ×
5)
Reduce
filters

(5
× 5)
filters

of filters in
Max Pooled
and then
applied (1 ×
1)
convolution

Inception
3A

64 96 128 16 32 32

Inception
3B

128 128 192 32 96 64

Inception
4A

192 96 208 16 96 64

Inception
4B

160 112 224 24 64 64

Inception
4C

128 128 256 24 64 64

Inception
4D

112 144 288 32 64 64

Inception
4E

256 160 320 32 128 128

Inception
5A

256 160 320 32 128 128

Inception
5B

384 192 384 48 128 128

N.B.: CONV: Convolutional Layers, Max Pool: Max Pooling Layers, and FC: Fully
Connected Layers.

R.A. Rizvee et al. Array 27 (2025) 100428

6

paddings are kept such as the input and output height and width
dimension stays the same. The output of each CONV layer is passed
through a ReLU activation function. The total number of parameters of
the architecture is 134,268,738 among them 134,268,738 are trainable
parameters.

3.2.3. InceptionNetV1
In this section, we will discuss the InceptionNetV1 architecture as

shown in Fig. 4 that has been used to address the Phuti Karpas leaf

detection problem [30]. Identifying the filter or kernel size is crucial to
label the performance of CNN based architectures and often it is a
difficult and experimental task for each dataset to properly find the
concerned size. InceptionNet architecture or GoogleNet architecture
shades light on this aspect and applies filters of multiple sizes. Its novelty
lies in recognizing similar categories of images having multiple sizes,
shapes, scales, and orientations of the main subject. In Tables 2 and 3,
the summarized information of the convolutional layers, max pooling
layers, and fully connected layers have been presented. Besides, there

Fig. 5. Abstract view of InceptionNet architecture’s main network.

Fig. 6. An abstract pictorial representation of MobileNetV2 architecture’s layers.

R.A. Rizvee et al. Array 27 (2025) 100428

7

are some inception layers that applies some (1 × 1), (3 × 3), (5 × 5)
filters and a max pooling over the input feature map separately and then
concatenate the results increasing the number of channels and keeping
the height and width same to the input image during returning the
extracted feature map (see Fig. 4 and Table 2).

Fig. 5 presents an overview of Inception architecture. Only the major
architecture’s layers are presented. Inception architecture also main
tains two additional very small architectures which are simultaneously
trained. For simplicity, they are omitted.

InceptionNetV1 also applies two additional parallel auxiliary layers
consisting of an average pooling layer (Avg Pool), a single convolutional
layer, and two fully connected layers. All of these three networks are
simultaneously trained, and weights are updated. These two auxiliary
networks work over the outputs of inception 4A and inception 4D layers
respectively.

3.2.4. MobileNetV2
MobileNetV2 is another very known architecture as shown in Fig. 6

that is very lightweight and suits well for mobile devices where it re
quires to solve extensive mathematical calculations [31]. This archi
tecture maintains a bottleneck layer that applies inverted residuals
technique which works on three steps. Firstly, it applies an expansion
layer or convolution (E) to uncompress the data, then a depthwise layer
or depthwise convolution (D) to filter the data and finally a projection

layer or compression layer (C) to compress the data. Also, they apply the
idea of skip connection to propagate residue among deep layers. To
expand, (1 × 1) filter is used in the two-dimensional convolutional layer
along with ReLU as the activation mechanism. In the depthwise layer,
depthwise 2D convolution is used which is composed of (3 × 3) filters.
Depthwise convolution is different from the traditional two-dimensional
convolutional layers where the prior one applies different filters for each
channel and then merges them. The projection layer applies traditional
two-dimensional convolution consisting of (1 × 1) filters. Both depth
wise CONV and Expansion CONV applies ReLU following Batch
Normalization after two-dimensional convolution. Compressed CONV
does not apply any activation and directly forwards the data after
applying convolution (Table 4).

Each bottleneck layer consists of three modules, expansion convo
lution with ReLU, depthwise convolution with ReLU, and normal two-
dimensional convolution without ReLU. Also, a skip connection or
simple value concatenation is performed between input and output if the
number of channels (3rd dimension) matches.

3.2.5. Baseline architecture
In this study, we have also tested a custom baseline architecture that

is comparatively much simpler in design than the rest of the well-known
architectures. The main goal was to understand how large-scale deep
architectures perform in solving the Phuti Karpas leaf recognition

Table 4
Summarized information of the feature maps of MobileNetV2 architecture.

Layer #Filters/Neurons Filter size Stride Size of feature map Activation function

Image ​ ​ ​ 227 × 227 × 3* –
CONV 32 3 × 3 2 114 × 114 × 32 ReLU
Depthwise CONV 32 D 3 × 3 ​ 114 × 114 × 32 ReLU
Compressed CONV 16 1 × 1 ​ 114 × 114 × 16 –
Bottleneck 1 24 E 1 × 1, D 3 × 3, 2 57 × 57 × 24 ReLU

–C 1 × 1
Bottleneck 2 24 E 1 × 1, D 3 × 3,

C 1 × 1
1 57 × 57 × 24 ReLU

–
Bottleneck 3 32 E 1 × 1, D 3 × 3,

C 1 × 1
2 29 × 29 × 32 ReLU

–
Bottleneck 4 32 E 1 × 1, D 3 × 3,

C 1 × 1
1 29 × 29 × 32 ReLU

–
Bottleneck 5 32 E 1 × 1, D 3 × 3,

C 1 × 1
1 29 × 29 × 32 ReLU

–
Bottleneck 6 64 E 1 × 1, D 3 × 3,

C 1 × 1
2 15 × 15 × 64 ReLU

–
Bottleneck 7 64 E 1 × 1, D 3 × 3,

C 1 × 1
1 15 × 15 × 64 ReLU

–
Bottleneck 8 64 E 1 × 1, D 3 × 3,

C 1 × 1
1 15 × 15 × 64 ReLU

–
Bottleneck 9 64 E 1 × 1, D 3 × 3,

C 1 × 1
1 15 × 15 × 64 ReLU

–
Bottleneck 10 96 E 1 × 1, D 3 × 3,

C 1 × 1
1 15 × 15 × 96 ReLU

–
Bottleneck 11 96 E 1 × 1, D 3 × 3,

C 1 × 1
1 15 × 15 × 96 ReLU

–
Bottleneck 12 96 E 1 × 1, D 3 × 3,

C 1 × 1
1 15 × 15 × 96 ReLU

–
Bottleneck 13 160 E 1 × 1, D 3 × 3,

C 1 × 1
2 8 × 8 × 160 ReLU

–
Bottleneck 14 160 E 1 × 1, D 3 × 3,

C 1 × 1
1 8 × 8 × 160 ReLU

–
Bottleneck 15 160 E 1 × 1, D 3 × 3,

C 1 × 1
1 8 × 8 × 160 ReLU

–
Bottleneck 16 320 E 1 × 1, D 3 × 3,

C 1 × 1
1 8 × 8 × 320 ReLU

–
CONV 1280 1 × 1 ​ 8 × 8 × 1280 ​
Batch Normalization ​ ​ ​ 8 × 8 × 1280 ​
ReLU ​ ​ ​ 8 × 8 × 1280 ​
Avg Pool ​ ​ ​ 1 × 1 × 1280 ​
FC 2 ​ ​ 2* SoftMax
Total number of parameters including auxiliary networks = 2,260,546

Total number of trainable parameters including auxiliary networks = 2,226,434

N.B.: E, D, and C are used to denote expansion, depthwise, and compressed convolution.

R.A. Rizvee et al. Array 27 (2025) 100428

8

problem than a very simple architecture. This approach helps to un
derstand both the challenges and novelties that come with using deep
large-scale architectures.

Our developed custom architecture is inspired by the AlexNet ar
chitecture. In the similar fashion it first gradually increases the number
of channels in the feature maps with the combination of two convolution
(CONV) and max pooling (Max Pool) blocks and a single convolution
block. Then using similar types of two CONV-Max Pool blocks it starts
decreasing the number of channels in the feature map. Then using two
fully connected layers and a single SoftMax layer it generates the class
predictions for an input image of (227 × 227 × 3) dimension. After each
CONV layer, a batch normalization layer is added to regularize the
feature maps. The novelty of this architecture is that it is much lighter in
weight compared to the AlexNet in the number of parameters. In Fig. 7,
we have shown a visualization of our baseline architecture. For each

convolutional block we have shown the number of filters, the kernel size
and the output feature maps. Each convolutional block uses ReLU acti
vation function. Also, the output of convolutional block is passed
through a batch normalization layer before passing thorough a max
pooling layer. Dropout normalization of 0.5 is also applied over the
output of fully connected layers. The total number of parameters in this
architecture is 3,251,802.

In this section, we presented a discussion regarding the wide known
image classification architectures and our proposed one custom baseline
architecture. Classification of Phuti Karpas plants is crucial due to not
having enough amount of trainable data. In the subsequent sections, we
present our findings in terms of evaluating performance of different
architectures in properly classifying Phuti Karpas plants. We believe, our
contribution will pave a great path in identifying Phuti Karpas plants in
nature under different circumstances and will be helpful in reviving this

Fig. 7. Visualization of the layers of the custom baseline architecture.

Fig. 8. Snapshot of the custom dataset used in this study. This study categorizes the instances within two classes – Phuti Karpas and Non-Phuti Karpas. In the image,
the upper and lower row represent the non-Phuti and Phuti-karpas instances. In the upper row, the first image is of Strawberry, second image is of Alstonia Scholaris,
third image is of Arjun and fourth image is of Basil. Amalgamation of all such images (13 classes each having 91 instances) are considered under a single class
denoting Non-Phuti Karpas.

R.A. Rizvee et al. Array 27 (2025) 100428

9

endangered entity.

4. Dataset description, implementation, and performance
evaluation

The primary goal of this study was to investigate the performance of
CNN-based architectures to correctly recognize Phuti Karpas Plants. This
study has tested five architectures in this regard and reported their re
sults. The architectures were AlexNet, IncpetionNetV1(Inception),
VGG16, MobileNetV2 and a simple custom developed baseline archi
tecture. All the architectures were investigated in detail to see how they
perform in recognizing the problem of Phuti Karpas plants.

This work has used a new dataset to address the problem. In the
dataset, there was no separation between the training and testing data.
Therefore, cross-validation has been used to analyze the performance of
the architectures based on different metrics. All the experiments were
conducted in a 64-bit machine having AMD Ryzen 9 5900x 12 Core
processor × 24, Nvidia RTX 3090 GPU, 128 GB RAM and Ubuntu 20.04
LTS operating system. The architectures were implemented in python
language using Keras, a deep learning API, and TensorFlow, an end-to-
end open-source platform for machine learning [32].

4.1. Dataset collection and pre-processing

In the dataset, there were in total of 2354 instances, where 1171
images were of Phuti Karpas plants’ and the remaining 1183 were of
other different healthy leaves such as Alstonia Scholaris, Arjun, Basil,
Catharanthus Roseus, Chinar, Gauva, Jamun, Jatropha, Lemon, Mango,
Pomegranate, Pongamia Pinnata, and Strawberry. Except from Cathar
anthus Roseus and Strawberry leaves, all were collected from Kaggle
[33]. Phuti Karpas plants’ images were collected manually using a
smartphone camera in a normal light condition found between 9 and 11
a.m. in the month of March. In total, 91 samples were collected from
each type of leaves for the aforementioned 13 categories and compiled
into one major category under Non-Phuti Karpas plants [33], provided a
dataset of both healthy and diseased plants. Only the healthy plants
were randomly chosen for each category. Images were collected using a
smartphone device’s camera. Catharanthus Roseus and Strawberry
leaves were also manually collected and curated by us through capturing
images using a smartphone device.

The main challenge of this study was to design a CNN-based archi
tecture that would properly recognize the Phuti Karpas plants among the
others. Therefore, there were two class labels that have been considered,
a Phuti Karpas plant and a non-Phuti Karpas plant. Some images from
the dataset have been shown in Fig. 8. The upper row shows images of
non-Phuti Karpas instances and the bottom row shows various images of
the Phuti karpas plants. Through pre-processing all the images were
scaled having dimensions of (227 × 227 × 3) where 3 denotes the
number of color channels in RGB sample space. Also, through pre-
processing the backgrounds of images were uniformed to color black
using built in python modules OpenCV.

4.2. Performance evaluation and discussion

In this section, all the experimented architectures are evaluated on
various metrics and aspects. The following subsections will contain a
brief description of each of the addressed factors. The architectures are
implemented in Python and using the Keras deep learning library. The
experiments are conducted in a Google Colab environment with a 16 GB
RAM and under both GPU and CPU processing capabilities to understand
the associated processing factors.

In Tables 5 and 6, information related to the training setup has been
presented. For each architecture, we have fixed a maximum of 100
epochs to run, and the batch size was fixed as 10. We have also used
early stopping criteria where the monitoring metric and patience has
been provided in Table 6.

Our training procedure was conducted in GPU. But we also experi
mented in the CPU environment so that we can get an estimation about
the performance in low powered devices. In the GPU environment, all
the architectures can perform very fast and so their differences are very
insignificant. But in the CPU environment, it is found that the baseline
architecture works fastest among the other architectures. The main
reasoning is the number of numeric computations is comparatively
lesser in this architecture than the others. Though the total number of
parameters is the least in MobileNetV2, it contains a significant number
of layers making it a very deep architecture which leads to a good
number of numerical calculations during processing. The other archi
tectures’ timing variation is also representative of their number of layers
and the parameters to train.

4.2.1. Accuracy
In this section, we will discuss the accuracy observed across different

cross-validation datasets for each of the architectures. The summarized
results have been presented in Table 7. A pictorial representation of the
table’s data has also been shown in Fig. 9.

From this experiment, we have observed that there is not any single
architecture that always works best for each cross-validation set. But
based on the average accuracy value, AlexNet has been found giving the
best performance whereas MobileNetV2 is very close and falls behind by
a little margin. The baseline architecture provides the third best per
formance exceeding the known architecture InceptionNet. InceptionNet
and VGG16 lie in the fourth and fifth position respectively. Now, if we
observe the head-to-head comparison to the best performance in each
fold, we might summarize it as follows.

• MobileNetV2 has provided the best accuracy performance in six
folds.

• AlexNet has provided the best accuracy performance in five folds.
• Baseline architecture has provided the best accuracy performance in

three folds.
• Inception has provided the best accuracy performance in two folds.
• In the head-to-head comparison, VGG16 has never provided accu

racy performance equivalent to the best in any fold.

Table 5
Information about Batch size, Epoch, and training time.

Rank Name Average
training
time (ms)
per batch
(CPU)

Average
training
time (ms)
per batch
(GPU)

Average
training
time (ms)
per epoch
(CPU)

Average
training
time (ms)
per epoch
(GPU)

2nd AlexNet 66 0.04 23000 8
4th Inception 246 0.35 11000 70
5th VGG16 2000 2 298000 380
3rd MobileNetV2 216 0.3 41000 58
1st Baseline 26 0.02 6000 4

Table 6
Information about Loss function, Optimizer, Learning Rate, and Early stopping
callback used during training across different architectures.

Loss function Categorical Cross Entropy
Optimizer Stochastic Gradient Descent (SGD)
Learning

Rate
For each architecture, the learning rate was 0.001 except for the
Inception architecture.
In Inception architecture, progressive learning rate was used where
the initial learning rate was 0.01 and dropped as the power of 0.96
over the interval of 8 epochs.
The rates were set based on general practice for each architecture.

Early
stopping

Monitor metric = validation loss
patience = 20

R.A. Rizvee et al. Array 27 (2025) 100428

10

Therefore, it can be said that based on the average fold accuracy,
AlexNet provides comparatively better performance than MobileNetV2,
but in the head-to-head comparison, MobileNetV2 has given better
performance. MobileNetV2 falls behind because in some of the epochs,
the accuracy has reduced significantly whereas AlexNet has never fallen
very behind in accuracy.

4.2.2. Precision and recall
This section will summarize the performance status observed in

precision and recall of all the tested architectures across different cross-

validation folds. Precision denotes the ratio of the number of true pos
itives with respect to all the positive instances observed for a class and
recall denotes the ratio of the positive instances over all the expected
instances for a particular class. Similar to the discussion regarding ac
curacy, results observed in precision represent a similar performance
pattern that is summarized in Table 8. Similar to previous discussion, a
pictorial representation has also been presented in Fig. 10.

From Table 8, we can see that, there is not any single architecture
that has performed best in each and every fold. However, we can get an
overall recapitulated idea if we consider the average statistics across all

Table 7
The Accuracy observed in each cross-validation fold during training across different architectures over the testing dataset. In each fold lies 80 % training data, 10 %
testing data, and 10 % validation data.

Fold AlexNet (%) Inception (%) VGG16 (%) MobileNetV2 (%) Baseline (%)

1 98.31 97.88 97.81 100a 98.31
2 99.15 99.58a 98 99.58a 98.73
3 99.15a 98.73 96.61 96.19 98.73
4 99.58a 98.73 98.73 98.73 99.58a

5 100a 98.31 99.58 100a 100a

6 99.15a 97.88 97.88 99.15a 99.15a

7 98.73 99.58a 98.73 99.58a 98.31
8 99.58 99.58 97.88 100a 99.15
9 98.31 98.31 98.31 99.58a 98.31
10 99.58a 99.15 99.58 97.88 98.73
Average 99.15a 98.77 98.31 99.07 98.9
Rank Summary 1st 4th 5th 2nd 3rd

a Denotes the best performance observed in that particular fold.

Fig. 9. Bar Chart Representation of the observed accuracies of each architecture in each fold.

Table 8
Precision values observed for each architecture across different cross-validation folds. (*) Operator denotes the best performance observed.

Fold AlexNet (%) Inception (%) VGG16 (%) MobileNetV2 (%) Baseline (%)

1 98.26 97.98 97.8 100* 98.26
2 99.17 99.58* 98.23 99.58* 98.77
3 99.08* 98.76 96.58 96.28 98.64
4 99.58* 98.74 98.74 98.74 99.58*
5 100* 98.47 99.61 100* 100*
6 99.15 97.85 97.84 99.21* 99.12
7 98.74 99.58* 98.73 99.58* 98.33
8 99.59 99.59 97.87 100* 99.15
9 98.37 98.25 98.3 98.55* 98.37
10 99.5* 99.13 99.5 97.76 98.53
Average 99.14* 98.79 98.32 98.97 98.88
Rank Summary 1st 4th 5th 2nd 3rd

R.A. Rizvee et al. Array 27 (2025) 100428

11

the folds. Here AlexNet provides the best average performance observed
across different epochs as well. Second best performance has been
observed from MobileNetV2. MobileNetV2 demonstrated impressive
performance in some folds, but due to exhibiting poor performance in
some folds (E.g., Fold 3, Fold 10, etc.) the overall performance

deteriorated. Similar to previous discussion, though our proposed
customized lightweight baseline architecture did not exhibit the best
performance but it provided a very competitive performance across each
fold. Most noticeably, in Fold 3, where even MobileNetV2 degraded its
performance radically, our custom architecture possessed an overall

Fig. 10. Bar Chart Representation of the observed precision scores of each architecture in each fold.

Table 9
Recall values observed for each architecture across different cross-validation folds. (*) Operator denotes the best performance observed.

Fold AlexNet (%) Inception (%) VGG16 (%) MobileNetV2 (%) Baseline (%)

1 98.35 97.78 97 100 98.35
2 99.15 99.57 98.31 99.58 98.72
3 99.22 98.68 96.58 96.03 98.84
4 99.58 98.73 99 98.73 99.58
5 100 98.17 99.54 100 100
6 99.15 97.8 97.95 99.1 99.2
7 98.73 99.57 98.73 99.57 98.3
8 99.57 99.57 97.89 100 99.17
9 98.24 98.41 98.3 99.6 98.24
10 99.64 99.13 99.64 97.83 98.91
Average 99.16** 98.74 98.29 99.04 98.93
Rank Summary 1st 4th 5th 2nd 3rd

Fig. 11. Bar Chart Representation of the observed recall scores of each architecture in each fold.

R.A. Rizvee et al. Array 27 (2025) 100428

12

constant performance. In terms of the average statistics, Inception ar
chitecture comes at the fourth place. It also showed a good performance,
however average result deteriorated due to exhibit poor performance
across fold 6. VGG16 ranks in the fifth position demonstrating a weaker

performance almost across all the folds.
We have also shown the results that have been observed from the

recall across different folds. From Table 9, a summarized status
regarding this can be seen. The results represent the pattern already

Fig. 12. Loss variation observed during training of AlexNet for fold 5, 6, 7, 8, and 9, respectively from left to right.

Fig. 13. Loss variation observed during training of Inception for fold 5, 6, 7, 8, and 9, respectively from left to right.

R.A. Rizvee et al. Array 27 (2025) 100428

13

observed and discussed prior to the accuracy and precision where
AlexNet provides the best performance and second to it is found from
MobileNetV2. A pictorial representation has also been shown in Fig. 11.

Similar to the previous discussion, we can see that, the performance of
all the architectures is quite competitive. Though, in terms of average
statistics, AlexNet holds the first position, MobileNetV2 exhibits

Fig. 14. Loss variation observed during training of VGG16 for fold 5, 6, 7, 8, and 9, respectively from left to right.

Fig. 15. Loss variation observed during training of MobileNetV2 for fold 5, 6, 7, 8, and 9, respectively from left to right.

R.A. Rizvee et al. Array 27 (2025) 100428

14

Fig. 16. Loss variation observed during training of Custom Baseline for fold 5, 6, 7, 8, and 9, respectively from left to right.

Fig. 17. Accuracy variation observed during training of AlexNet for fold 5, 6, 7, 8, and 9, respectively from left to right.

R.A. Rizvee et al. Array 27 (2025) 100428

15

impressive performance in some folds but just like the prior discussion
due to performing worse in some folds the average value deteriorated.
Our custom baseline architecture holds a constant performance across

all the folds in terms of recall values also. Inception architecture holds its
place in the fourth position. It also presented a competitive performance
as already discussed but falls a bit behind in folds such as – 1st, 5th and

Fig. 18. Accuracy variation observed during training of Inception for fold 5, 6, 7, 8, and 9, respectively from left to right.

Fig. 19. Accuracy variation observed during training of VGG16 for fold 5, 6, 7, 8, and 9, respectively from left to right.

R.A. Rizvee et al. Array 27 (2025) 100428

16

6th. VGG16 showed a weaker performance in almost all the folds except
the 10th fold.

4.2.3. Loss and accuracy variation during training
In this sub-section, we will observe the training status to understand

how the loss and accuracy are varied over epochs in different folds.
Figs. 12-16 and Figs. 17-21 illustrates loss and accuracy variations

Fig. 20. Accuracy variation observed during training of MobileNetV2 for fold 5, 6, 7, 8, and 9, respectively from left to right.

Fig. 21. Accuracy variation observed during training of Custom Baseline for fold 5, 6, 7, 8, and 9, respectively from left to right.

R.A. Rizvee et al. Array 27 (2025) 100428

17

during training of AlexNet, Inception, VGG16, MobileNetV2, and base
line, respectively. This will help us to understand the architecture’s
learning behaviour along with the convergence pattern. For ease of
understanding, we have provided the results for five folds for each of the
architectures. The patterns were found similar in the remaining folds.

The change in the training loss was found stable in all the architec
tures. Main distinguishing pattern was observed in the validation loss.
During training of AlexNet, we have seen that the loss variation to a very
minimum level. It converged very early and stayed stable during the
remaining epochs. Only in epoch 7, there were some abrupt changes.
The change in loss was also found mostly stable in the Inception archi
tecture. A bit of instability was observed only in fold 5 where some
sudden spike is found. VGG16 provided mainly two types of loss curves.

One is seen in fold 5, 8 and 9 where it mostly stays stable with some
intermediary spikes. The second type can be observed in fold 6 and 7
where it suddenly reduces loss and stays mostly in that way. The loss
changing behaviour of MobileNetV2 was very unstable, it showed a
significant number of spikes through the epochs in all the folds. The
behaviour of baseline architecture was very similar to the AlexNet
mostly because the prior one was designed being inspired by it. It was
found very stable during the learning, but a sudden shift can only be
observed only in fold 9 in later epochs.

Similar to the previous discussion, we shall mainly focus on the ac
curacy over the validation data or unseen data. The change in accuracy
over the training data was seen stable in all the folds for all the archi
tectures over the epochs. The accuracy variation of AlexNet was found
stable. There were a small number of intermediary spikes (fold 7 and 9),
but mostly the change was found stable. The change in accuracy of
Inception architecture over epochs in different folds was found very
stable overall. VGG16’s accuracy variation was found unstable mostly in
the earlier epochs with significant abrupt changes. But with gradual
progression it started to converge and remained overall stable at the end
of the epochs. This behaviour was found overall in the folds. Mobile
NetV2’s behaviour was found very chaotic with a lot of abrupt shifts in
the accuracy which is similar to its corresponding abrupt shifting in the
loss in the same folds. A possible reason can be the number of data was

Table 10
Trained Model’s size of different architectures found in hdf5 (Hierarchical data
format version 5).

Rank Name Size (Megabytes) Total number of parameters

4th AlexNet 466.4 58,295,042
3rd Inception 41.5 10,309,430
5th VGG16 537.1 134,268,738
1st MobileNetV2 9.4 2,260,546
2nd Baseline 13.1 3,251,802

Fig. 22. Loss variation during training of AlexNet, Inception, VGG16, MobileNetV2, and baseline respectively. Each row represents charts for each architecture
respectively. For fold 5, 6, 7, 8, and 9 results have been shown from left to right order in each row.

R.A. Rizvee et al. Array 27 (2025) 100428

18

not enough to train this architecture in a stable manner. Though overall,
the accuracy achieved by MobileNetV2 was found pretty impressive and
very close to the best accuracy observed in this problem.

Baseline architecture’s accuracy convergence behaviour was found
very similar to the AlexNet, mostly being stable. Only in the fold 10 some
abrupt changes can be observed in the later epochs which should be
related to the change in the loss as discussed.

4.2.4. Model parameters and size
In this section, we shall provide the size of the trained weight files for

each of the architectures to understand the required memory usage.
From Table 10, we can get an idea about the required model size to store
a trained model in the application device for each architecture. It is
found that, VGG16 requires the most and MobileNetV2 requires the least
amount of memory. This number is directly proportional to the number
of architecture’s parameters.

4.3. Deployment as an android application

To test the proposed model, an Android application is also designed
with Android Studio using a desktop computer with AMD Ryzen5 3600
(4 GHz), Windows 10 Pro (64-bit) operating system, 16.0 GB RAM, GPU
(Dedicated 6 GB NVIDIA GeForce GTX1660ti), and 1 TB Solid State
Driver. The app is finally tested in Xiaomi Mi A1 based on stock Android
9. A snapshot of the proposed architecture is shown in Fig. 24.

So, in summary, the identification of the Phuti Karpas tree presents
significant challenges due to the complexity and diversity of plant spe
cies. Traditional identification methods relying on visual inspections are
inadequate, as they fail to account for variations influenced by envi
ronmental factors and seasonal changes. This study leverages advanced
computational techniques through Convolutional Neural Networks
(CNNs) to enhance the automatic classification of the Phuti Karpas tree.
Various architectures, including AlexNet, Inception, VGG16, and
MobileNetV2, were implemented and evaluated using a custom dataset
of leaf images. Experiments were conducted in a Google Colab envi
ronment with both CPU and GPU processing, measuring key perfor
mance metrics such as accuracy, precision, and recall across multiple
cross-validation folds.

Our findings reveal that AlexNet achieved the highest average ac
curacy, while MobileNetV2 displayed competitive efficiency with a
significantly smaller model size. The baseline architecture, despite its
fast training times, did not match the performance of AlexNet or
MobileNetV2. The study underscores the effectiveness of deep learning
approaches in plant species classification, providing valuable insights
into feature extraction and model performance. Furthermore, deploying
the trained model as an Android application enables real-time identifi
cation of the Phuti Karpas plant, offering practical implications for
agricultural practices and conservation efforts. Overall, this research
addresses critical challenges in automatic plant identification, demon
strating how advanced machine learning techniques can improve

Fig. 23. Accuracy variation during training of AlexNet, Inception, VGG16, MobileNetV2, and baseline. Each row represents charts for their corresponding archi
tecture. Results for fold 5–9 have been shown from left to right order in each row.

R.A. Rizvee et al. Array 27 (2025) 100428

19

accuracy and efficiency in plant taxonomy.

5. Discussion and summary

This section presents a summary of all the architectures that have
been tested in this study based on different metrics along with their pros
and cons. Table 11 summarizes the pros and cons of all the architectures
already been addressed. Based on the points, the users would be able to
decide which architecture would be useful for their application and
device that are going to be used.

6. Limitation and future directions

The core novelty of this work is providing a curated collection of data
for Phuti Karpas plants and the evaluation of widely used CNN-based
architectures in detecting the aforementioned plant from a wide range
of samples of different plants. Through a robust evaluation, we have
presented the limitations and constrained for all the architectures in
terms of accuracy, precision, recall, learning pattern and the underlying
challenges while deploying as a mobile application.

This work bears a number of limitations that can be addressed in the
later iterations of this work. For example, a crucial factor is the

limitation of dataset. Though the resource is quite scarce but a wide
incorporation of more data could be useful in improving the perfor
mance of the currently used deep architectures. As our work is a pio
neering direction in formulating a deep-learning based approach in
detecting Phuti Karpas we have used a set of widely acknowledged deep
learning based architectures for the evaluation and a custom light-
weight baseline architecture. In the follow-up extension of this work,
it would be a great opportunity to explore different architectures as well
including hyper tunning the parameters or developing a grid-search
alike parameter finding algorithm in this context. Experimenting with

Fig. 24. A snapshot of the developed Android application to recognize a Phuti
Karpas plant in real-time.

Table 11
Summarized discussion regarding the pros and cons of all the tested
architectures.

Pros Cons

AlexNet • AlexNet has provided the best
average accuracy in the phuti
karpas leaf recognition
problem. Based on precision
and recall it also stands in the
first position among others.

• Its loss and accuracy
changing behaviour was
found mostly very stable.

• Its processing time was also
found very moderate.

• The major con of this
architecture is its required
size to store the model’s
weights. It is heavy weighted
and ranks fourth based on
lightness in weight among
the architectures.

Inception • This architecture ranks third
among the architectures
based on lightness in storing
the weights.

• This architecture provides
stable change in training in
loss and accuracy variation.

• This architecture has ranked
fourth in the average
accuracy, precision and
recall over all the
architectures with a
difference of 0.38 %, 0.37 %
and 0.42 % from the AlexNet
in the metrics respectively.

• This architecture also takes a
good amount of time during
training and ranks fourth
though the difference is not
much significant compared
to the MobileNetV2.

VGG16 • This architecture provides
stable performance during
training while loss and
accuracy variation.

• This architecture ranks fifth
in the average accuracy,
precision and recall over all
the architectures having a
difference of 0.84 %, 0.82 %
and 0.87 % from AlexNet in
the metrics respectively.

• It is the most weighted
architecture among all the
architectures tested.

• It also takes the most amount
of time during training.

MobileNetV2 • MobileNetV2 has provided
the second best performance
in accuracy, precision and
recall for our addressed
problem. The difference is
very insignificant and close to
the AlexNet.

• A major advantage of this
architecture is it is very
lightweight and ranks first
among all the architectures
that have been tested based
on the lightness in weight.

• As this architecture is very
deep, the processing time to
receive the labelling verdict
for an input image is high.

• Its change in loss and
accuracy during training was
also found very unstable.

Baseline • This architecture’s processing
speed is the fastest among all
the tested architectures.

• It is also the second lightest in
weight among all the
architectures.

• Its learning curve for loss and
accuracy during training was
found mostly stable with a
very few abrupt changes.

• It ranks third in the average
accuracy, precision and
recall metric among the
architectures with a
difference of 0.16 %, 0.26 %
and 0.23 % respectively from
AlexNet.

R.A. Rizvee et al. Array 27 (2025) 100428

20

ensembled methods or transfer-learning based approaches can also be a
potential direction for the extension of this work. Preprocessing is also
an important part of the current version of this work which is a bit
challenging in real-life settings, more generalized dataset or approaches
can be investigated in this regard the make the solutions more robust.

7. Conclusion

Research studies on plant recognition and classification have grown
exponentially. It has become an operational priority to monitor the
growth of trees, production of fruits, disease, and pest control for plant
management. In the past few years, research on plant recognition and
identification using the Machine Learning and Image classification
methods has increased significantly. Even though prevalent methods
such as object-based image analysis and UAV imagery methods can work
effectively on plant and tree recognition, Machine Learning methods
such as CNN can deal effectively with large datasets providing sufficient
accuracy for recognition and classification problems. In this study,
different existing Convolutional Neural Network architectures along
with a new architecture have been used to address the Phuti Karpas
plant detection problem. For this study, a raw dataset was collected
consisting of several images of the Phuti Karpas plant for training. Also,
a custom dataset was prepared containing various Non-Phuti karpas
instances for a fairground comparison. Full dataset was pre-processed so
that they contain similar size and similar type of background. Then the
experiment was conducted using the architectures, AlexNet, Inception,
VGG16, MobilNetV2, and baseline over different metrics. AlexNet has
provided the best average accuracy, precision and recall score in 10-fold
cross validation though it poses some disadvantages such as being
extremely heavy weighted architecture. MobileNetV2 has provided the
second-best performance in the accuracy, precision and recall metrics
and falls behind for a very small margin. It is a very light weighted ar
chitecture though its processing time is quite significant and possesses
severe instability during training observed over the validation dataset.
baseline architecture, inspired by AlexNet, performs neither best nor
worst and provides a moderate performance in all the metrics. Inception
and VGG16 have been found to perform worse comparatively than the
others due to being very deep and heavy parameterized respectively.
This study has tried to investigate all the important metrics so that it can
guide the users about their usage considering their resource re
quirements and constraints. As an ongoing work, the future extensions
will focus on evaluating other architectures along with focusing on
identifying other types of Karpas plants in a robust manner.

CRediT authorship contribution statement

Redwan Ahmed Rizvee: Visualization, Resources, Project admin
istration, Methodology, Investigation, Data curation, Conceptualization.
Omar Farrok: Resources, Project administration, Investigation, Data
curation. Mahamudul Hasan: Writing – review & editing, Writing –
original draft, Validation, Supervision, Project administration, Meth
odology, Data curation, Conceptualization. Faisal Farhan: Visualiza
tion, Validation, Conceptualization. Md Hafanul Islam: Writing –
original draft, Visualization, Validation, Supervision, Resources. Md
Khalid Hasan: Writing – review & editing, Writing – original draft,
Supervision. Abidur Rahman: Validation, Supervision, Software.
Maheen Islam: Writing – original draft, Supervision, Software. Md
Sawkat Ali: Supervision, Software, Project administration, Conceptu
alization. Taskeed Jabid: Software, Project administration, Conceptu
alization. Mohammad Rifat Ahmmad Rashid: Writing – original draft,
Visualization, Supervision, Conceptualization. Mohammad Manzurul
Islam: Data curation.

Declaration of competing interest

The authors declare that they have no known competing financial

interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

The data that has been used is confidential.

References

[1] Saleem G, Akhtar M, Ahmed N, Qureshi WS. Automated analysis of visual leaf
shape features for plant classification. Comput Electron Agric Feb. 2019;157:
270–80. https://doi.org/10.1016/j.compag.2018.12.038.

[2] Anubha Pearline S, Sathiesh Kumar V, Harini S. A study on plant recognition using
conventional image processing and deep learning approaches. J Intell Fuzzy Syst
2019;36(3):1997–2004. https://doi.org/10.3233/JIFS-169911.

[3] Dyrmann M, Karstoft H, Midtiby H. Plant species classification using deep
convolutional neural network. Biosyst Eng Sep. 2016;151:72–80. https://doi.org/
10.1016/j.biosystemseng.2016.08.024.

[4] Mehdipour Ghazi M, Yanikoglu B, Aptoula E. Plant identification using deep neural
networks via optimization of transfer learning parameters. Neurocomputing 2017;
235(Sep). https://doi.org/10.1016/j.neucom.2017.01.018.

[5] Haralick RM, Dinstein I, Shanmugam K. Textural features for image classification.
IEEE Transactions on Systems, Man and Cybernetics 1973;SMC-3(6):610–21.
https://doi.org/10.1109/TSMC.1973.4309314.

[6] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In:
Proceedings of the IEEE computer society conference on computer vision and
pattern recognition, vol 2016; Dec. 2016. p. 770–8. https://doi.org/10.1109/
CVPR.2016.90. December.

[7] Zhu Y, et al. TA-CNN: two-way attention models in deep convolutional neural
network for plant recognition. Neurocomputing Nov. 2019;365:191–200. https://
doi.org/10.1016/j.neucom.2019.07.016.

[8] Neto JC, Meyer GE, Jones DD, Samal AK. Plant species identification using Elliptic
Fourier leaf shape analysis. Comput Electron Agric 2006;50(2):121–34. https://
doi.org/10.1016/J.COMPAG.2005.09.004.

[9] Ahmed Nisar, Khan MUG, Asif S. (2) (PDF) an automatic leaf based plant
identification system. Science International-Lahore. 2016;28. https://www.rese
archgate.net/publication/299183724_An_Automatic_Leaf_Based_Plant_Identificati
on_System. [Accessed 19 September 2021].

[10] Rashad MZ, el-Desouky BS, Khawasik MS. Plants images classification based on
textural features using combined classifier. Int J Comput Sci Inf Technol Aug. 2011;
3(4):93–100. https://doi.org/10.5121/IJCSIT.2011.3407.

[11] Olsen A, Han S, Calvert B, Ridd P, Kenny O. In situ leaf classification using
histograms of oriented gradients. In: 2015 international conference on digital
image computing: techniques and applications, DICTA 2015; 2015. https://doi.
org/10.1109/DICTA.2015.7371274.

[12] Charters J, Wang Z, Chi Z, Tsoi AC, Feng DD. EAGLE: a novel descriptor for
identifying plant species using leaf lamina vascular features. In: 2014 IEEE
international conference on multimedia and expo workshops, ICMEW 2014; Sep.
2014. https://doi.org/10.1109/ICMEW.2014.6890557.

[13] Larese MG, Namías R, Craviotto RM, Arango MR, Gallo C, Granitto PM. Automatic
classification of legumes using leaf vein image features. Pattern Recogn Jan. 2014;
47(1):158–68. https://doi.org/10.1016/J.PATCOG.2013.06.012.

[14] Sünderhauf N, McCool C, Upcroft B, Perez T. Fine-grained plant classification using
convolutional neural networks for feature extraction. In: Working notes of CLEF
2014 conference; 2014.

[15] Wäldchen J, Mäder P. Plant species identification using computer vision
techniques: a systematic literature review. Arch Comput Methods Eng 2018;25:
507–43.

[16] Naresh YG, Nagendraswamy HS. Classification of medicinal plants: an approach
using modified LBP with symbolic representation. Neurocomputing Jan. 2016;173:
1789–97. https://doi.org/10.1016/J.NEUCOM.2015.08.090.

[17] Gogul I, Sathiesh Kumar V. Flower species recognition system using convolution
neural networks and transfer learning. In: 2017 fourth international conference on
signal processing, communication and networking (ICSCN). IEEE; 2017.

[18] Csillik O, Cherbini J, Johnson R, Lyons A, Kelly M. Identification of citrus trees
from unmanned aerial vehicle imagery using convolutional neural networks.
Drones Dec. 2018;2(4):1–16. https://doi.org/10.3390/drones2040039.

[19] Safonova A, Tabik S, Alcaraz-Segura D, Rubtsov A, Maglinets Y, Herrera F.
Detection of fir trees (Abies sibirica) damaged by the bark beetle in unmanned
aerial vehicle images with deep learning. Remote Sens Mar. 2019;11(6):643.
https://doi.org/10.3390/rs11060643.

[20] Lee SH, Chan CS, Remagnino P. Multi-organ plant classification based on
convolutional and recurrent neural networks. IEEE Trans Image Process Sep. 2018;
27(9):4287–301. https://doi.org/10.1109/TIP.2018.2836321.

[21] Zhang B, Zhao L, Zhang X. Three-dimensional convolutional neural network model
for tree species classification using airborne hyperspectral images. Rem Sens
Environ 2020;247(Sep). https://doi.org/10.1016/j.rse.2020.111938.

[22] Momeny M, Jahanbakhshi A, Jafarnezhad K, Zhang YD. Accurate classification of
cherry fruit using deep CNN based on hybrid pooling approach. Postharvest Biol
Technol 2020;166(Aug). https://doi.org/10.1016/j.postharvbio.2020.111204.

[23] Singh UP, Chouhan SS, Jain S, Jain S. Multilayer convolution neural network for
the classification of Mango leaves infected by anthracnose disease. IEEE Access
2019;7:43721–9. https://doi.org/10.1109/ACCESS.2019.2907383.

R.A. Rizvee et al. Array 27 (2025) 100428

21

https://doi.org/10.1016/j.compag.2018.12.038
https://doi.org/10.3233/JIFS-169911
https://doi.org/10.1016/j.biosystemseng.2016.08.024
https://doi.org/10.1016/j.biosystemseng.2016.08.024
https://doi.org/10.1016/j.neucom.2017.01.018
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1016/j.neucom.2019.07.016
https://doi.org/10.1016/j.neucom.2019.07.016
https://doi.org/10.1016/J.COMPAG.2005.09.004
https://doi.org/10.1016/J.COMPAG.2005.09.004
https://www.researchgate.net/publication/299183724_An_Automatic_Leaf_Based_Plant_Identification_System
https://www.researchgate.net/publication/299183724_An_Automatic_Leaf_Based_Plant_Identification_System
https://www.researchgate.net/publication/299183724_An_Automatic_Leaf_Based_Plant_Identification_System
https://doi.org/10.5121/IJCSIT.2011.3407
https://doi.org/10.1109/DICTA.2015.7371274
https://doi.org/10.1109/DICTA.2015.7371274
https://doi.org/10.1109/ICMEW.2014.6890557
https://doi.org/10.1016/J.PATCOG.2013.06.012
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref14
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref14
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref14
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref15
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref15
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref15
https://doi.org/10.1016/J.NEUCOM.2015.08.090
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref17
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref17
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref17
https://doi.org/10.3390/drones2040039
https://doi.org/10.3390/rs11060643
https://doi.org/10.1109/TIP.2018.2836321
https://doi.org/10.1016/j.rse.2020.111938
https://doi.org/10.1016/j.postharvbio.2020.111204
https://doi.org/10.1109/ACCESS.2019.2907383

[24] He H, Pan J, Lu N, Chen B, Jiao R. Short-term load probabilistic forecasting based
on quantile regression convolutional neural network and Epanechnikov kernel
density estimation. Energy Rep Dec. 2020;6:1550–6. https://doi.org/10.1016/j.
egyr.2020.10.053.

[25] Liu Z. Soft-shell shrimp recognition based on an improved AlexNet for quality
evaluations. J Food Eng 2020;266(Feb). https://doi.org/10.1016/j.
jfoodeng.2019.109698.

[26] Lu S, Lu Z, Zhang YD. Pathological brain detection based on AlexNet and transfer
learning. J Comput Sci Jan. 2019;30:41–7. https://doi.org/10.1016/j.
jocs.2018.11.008.

[27] Wang SH, et al. Alcoholism identification based on an Alexnet transfer learning
model. Front Psychiatr 2019;10(Apr). https://doi.org/10.3389/fpsyt.2019.00205.

[28] Prasetyo E, Suciati N, Fatichah C. Multi-level residual network VGGNet for fish
species classification. J King Saud Univ Comput Inf Sci 2021. https://doi.org/
10.1016/j.jksuci.2021.05.015.

[29] Wei J, et al. Analyzing the impact of soft errors in VGG networks implemented on
GPUs. Microelectron Reliab 2020;110(Jul). https://doi.org/10.1016/j.
microrel.2020.113648.

[30] Szegedy Christian, et al. Rethinking the inception architecture for computer vision.
In: Proceedings of the IEEE conference on computer vision and pattern recognition;
2016.

[31] Sandler Mark, et al. MobileNetV2: inverted residuals and linear bottlenecks. In:
Proceedings of the IEEE conference on computer vision and pattern recognition;
2018.

[32] Gulli Antonio, Pal Sujit. Deep learning with Keras. Packt Publishing Ltd.; 2017.
[33] Chouhan Siddharth Singh, Kaul Ajay, Singh Uday Pratap, Jain, Sanjeev. Plant

leaves for image classification. Version 2. Retrieved 5 Jan. 2023, from, https
://www.kaggle.com/datasets/csafrit2/plant-leaves-for-image-classification.

[34] Gulzar Yonis. Fruit image classification model based on MobileNetV2 with deep
transfer learning technique. Sustainability 2023;15(3):1906.

[35] Amri Emna, et al. Advancing automatic plant classification system in Saudi Arabia:
introducing a novel dataset and ensemble deep learning approach. Modeling Earth
Systems and Environment 2024;10(2):2693–709.

[36] Gulzar Yonis. Enhancing soybean classification with modified inception model: a
transfer learning approach. Emir J Food Agric 2024;36:1–9.

[37] Gulzar Yonis, et al. Harnessing the power of transfer learning in sunflower disease
detection: a comparative study. Agriculture 2023;13(8):1479.

[38] Alkanan Mohannad, Gulzar Yonis. Enhanced corn seed disease classification:
leveraging MobileNetV2 with feature augmentation and transfer learning.
Frontiers in Applied Mathematics and Statistics 2024;9:1320177.

[39] Gulzar Yonis, et al. Adaptability of deep learning: datasets and strategies in fruit
classification. In: BIO web of conferences. EDP Sciences; 2024. vol. 85.

[40] Huang Mengxing, et al. Efficient click-based interactive segmentation for medical
image with improved Plain-ViT. IEEE J Biomed Health Informatics 2024. https://
doi.org/10.1109/JBHI.2024.3392893.

[41] Huang Mengxing, et al. An interpretable approach using hybrid graph networks
and explainable AI for intelligent diagnosis recommendations in chronic disease
care. Biomed Signal Process Control 2024;91:105913.

[42] Nizamani Abdul Haseeb, et al. Advance brain tumor segmentation using feature
fusion methods with deep U-Net model with CNN for MRI data. J King Saud Univ-
Comput Information Sci 2023;35(9):101793.

[43] Bhatti Uzair Aslam, et al. MFFCG–Multi feature fusion for hyperspectral image
classification using graph attention network. Expert Syst Appl 2023;229:120496.

[44] Bhatti Uzair Aslam, et al. Deep learning with graph convolutional networks: an
overview and latest applications in computational intelligence. Int J Intell Syst
2023;1(2023):8342104.

R.A. Rizvee et al. Array 27 (2025) 100428

22

https://doi.org/10.1016/j.egyr.2020.10.053
https://doi.org/10.1016/j.egyr.2020.10.053
https://doi.org/10.1016/j.jfoodeng.2019.109698
https://doi.org/10.1016/j.jfoodeng.2019.109698
https://doi.org/10.1016/j.jocs.2018.11.008
https://doi.org/10.1016/j.jocs.2018.11.008
https://doi.org/10.3389/fpsyt.2019.00205
https://doi.org/10.1016/j.jksuci.2021.05.015
https://doi.org/10.1016/j.jksuci.2021.05.015
https://doi.org/10.1016/j.microrel.2020.113648
https://doi.org/10.1016/j.microrel.2020.113648
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref30
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref30
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref30
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref31
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref31
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref31
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref32
https://www.kaggle.com/datasets/csafrit2/plant-leaves-for-image-classification
https://www.kaggle.com/datasets/csafrit2/plant-leaves-for-image-classification
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref34
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref34
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref35
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref35
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref35
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref36
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref36
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref37
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref37
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref38
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref38
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref38
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref39
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref39
https://doi.org/10.1109/JBHI.2024.3392893
https://doi.org/10.1109/JBHI.2024.3392893
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref41
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref41
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref41
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref42
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref42
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref42
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref43
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref43
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref44
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref44
http://refhub.elsevier.com/S2590-0056(25)00055-4/sref44

	Revival of Muslin by Phuti Karpas plant identification with convolution neural network
	1 Introduction
	2 Related works
	3 Methodology
	3.1 Convolutional neural network
	3.2 CNN architectures
	3.2.1 AlexNet
	3.2.2 VGGNet
	3.2.3 InceptionNetV1
	3.2.4 MobileNetV2
	3.2.5 Baseline architecture

	4 Dataset description, implementation, and performance evaluation
	4.1 Dataset collection and pre-processing
	4.2 Performance evaluation and discussion
	4.2.1 Accuracy
	4.2.2 Precision and recall
	4.2.3 Loss and accuracy variation during training
	4.2.4 Model parameters and size

	4.3 Deployment as an android application

	5 Discussion and summary
	6 Limitation and future directions
	7 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

