Effect of Input Channel Reduction on EEG Seizure Detection

Md Shaikh Abrar Kabir, Faisal Farhan, Adnan Amin Siddique, Oli Lowna Baroi, Taniza Marium, Md. Jakaria Rahimi.

Przegląd Elektrotechniczny (2023)
ABSTRACT In this study, the effectiveness of six machine learning and eight deep learning algorithms in analyzing electroencephalogram (EEG) signals for detecting epileptic seizures has been investigated. The study utilizes 14 channels in the EMOTIV EPOC+ device which is based on international 10-20 system. To find out the most informative and sensitive channel, one of the 14 channels has been dropped one at a time. The accuracy values were determined for all the methods using two different datasets: the Guinea-Bissau dataset and the Nigeria dataset, both available on https://zenodo.org/record/1252141#.ZDdyj3ZByUl. In case of machine learning models, the performance of SVM classifier performs best with maximum accuracy of 83.2% (Guinea-Bissau) and 77% (Nigeria) without excluding any channels. No significant performance degradation has been observed for single channel exclusion of this classifier. Among the deep learning models, the four best performing models in terms of accuracy are CNN-LSTM (92.5%), IC-RNN (91.8%), ChronoNet (91.1%) and C-DRNN (88.6%). After excluding one channel at a time and investigating their effect on the performance of the four DL models, it has been observed that the most significant and most sensitive channels lie within the frontal and parietal zone. This finding will be very useful in practice as it indicates that the electrodes in the frontal and parietal zone should be placed with absolute precision for accurate diagnosis of the diseases. In addition, this study also explore the effectiveness of the selected classifiers in detecting seizure in case of failure of any particular EEG signal channel.